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Abstract

In this paper we develop a computational model of adaptation and
spatial vision for realistic tone reproduction. The model is based
on a multiscale representation of pattern, luminance, and color pro-
cessing in the human visual system. We incorporate the model into
a tone reproduction operator that maps the vast ranges of radiances
found in real and synthetic scenes into the small fixed ranges avail-
able on conventional display devices such as CRT’s and printers.
The model allows the operator to address the two major problems in
realistic tone reproduction: wide absolute range and high dynamic
range scenes can be displayed; and the displayed images match
our perceptions of the scenes at both threshold and suprathresh-
old levels to the degree possible given a particular display device.
Although in this paper we apply our visual model to the tone re-
production problem, the model is general and can be usefully ap-
plied to image quality metrics, image compression methods, and
perceptually-based image synthesis algorithms.
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1 INTRODUCTION

The range of light we encounter in natural scenes is vast. Theab-
solute levelof illumination provided by direct sunlight can be 100
million times more intense than starlight. Thedynamic rangeof
light energy can also be large, on the order of 10,000 to 1 from
highlights to shadows, or higher if light sources are visible.

Although physically-based rendering methods and new tech-
niques that utilize the output of digital cameras [Debevec97] now
allow us to produceradiance mapsthat accurately represent the
wide variations of light energy in scenes, neither of these methods
specify how to realistically display these images on conventional
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electronic and print-based media which have only moderate output
levels and typical dynamic ranges of less than 100 to 1.

Recently graphics researchers have started to address this issue
by developingtone reproduction operatorsthat map scene radi-
ances to display outputs with the goal of producing a visual match
between the scene and the display. There are two major problems
to be solved in realistic tone reproduction:

• to find an operator that maps the vast ranges of radiances
found in scenes into the range that can be produced by a given
display device.

• to be certain that this operator produces images that match our
perceptions of the scenes.

The critical element that links these two problems is thevisual
modelused in the tone reproduction operator. Visual models are
used to relate the perceptual responses of a scene observer to the
responses of the display observer in order to specify a mapping that
produces a visual match between the scene and the display. A cen-
tral issue is that different tone reproduction operators have made use
of different visual models to determine what constitutes a match.

Tumblin and Rushmeier’s [1993] operator is based on Stevens’
[1961] model ofbrightness and contrast perceptionillustrated in
Figure 1b. The operator attempts to produce images that capture
the changes insuprathreshold brightness and apparent contrastthat
occur with changes in the level of illumination. Ward [1994] intro-
duced an operator based on a model ofcontrast sensitivityderived
from threshold vs. intensity (TVI) functions similar to those shown
in Figure 1a. Its goal is to match thethreshold visibilityof features
in the image to features in the scene. Ferwerda [1996] developed an
operator based on a model of adaptation that like Ward’s matches
threshold visibility, but also accounts for the changes invisual acu-
ity and color discriminability that occur with the changes in the
level of illumination.

Both threshold and suprathreshold models of vision capture im-
portant aspects of our visual experience, and a realistic tone repro-
duction operator should produce a mapping that matches both as-
pects. Unfortunately, threshold models don’t scale well to predict
suprathreshold appearance, and suprathreshold models don’t accu-
rately predict visual thresholds.

Recently much effort has been devoted to developing tone re-
production operators forhigh dynamic rangescenes. Chiu [1993],
Schlick [1995], and Jobson [1996] introduced spatially-varying op-
erators that compress high dynamic range scenes into the limited
range available on display devices, but the ad-hoc visual models
they incorporate limits what can be said about the visual fidelity of
the mappings. Tumblin [1997] has recently introduced an opera-
tor for high dynamic range scenes based on a model ofperceptual
constancy. Although this operator produces attractive images, the
model it uses is not quantitative, and therefore the operator can’t
predict whether an image will be a visual match to a scene. Fi-
nally, Ward-Larson [1997] has introduced an operator that extends
the work of Ward [1994] and Ferwerda [1996] with a model oflocal
adaptation, to produce a threshold-based operator that can handle
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Figure 1: Threshold and suprathreshold models of vision: a) Threshold vs. intensity (TVI) functions for the rod and cone systems. The curves plot the
smallest threshold increment∆L necessary to see a spot against a uniform background with luminance L. b) Stevens’ model of suprathreshold brightness and
apparent contrast. The curves plot the changes in brightness and apparent contrast of gray targets and a white surround as the level of illumination rises (1 Bril
= apparent brightness of a target with a luminance of 1µLambert). Adapted from [Ferwerda96, Stevens61].

high dynamic range scenes, and also match the changes in threshold
visibility, visual acuity and color discriminability that occur with
changes in the level of illumination.

Although the innovations introduced in each of these operators
represent significant advances toward addressing the two funda-
mental problems of realistic tone reproduction, overall the prob-
lems have been attacked piecemeal. Thus some operators can only
handle achromatic scenes, or scenes illuminated at daylight levels.
Others can handle wide absolute ranges of illumination in chro-
matic scenes, but can’t handle high dynamic ranges. Still others
can handle full ranges of scene radiances, but can’t guarantee that
the images will match the scenes in any meaningful way. Finally,
those that do produce visual matches differ on whether they match
threshold measures like visibility and visual acuity, or suprathresh-
old measures like brightness and apparent contrast. Since the im-
ages these operators produce depend upon the visual models they
incorporate, a comprehensive solution to the problems of realistic
tone reproduction requires a more complete model of visual per-
ception.

In this paper we develop a computational model of adaptation
and spatial vision for realistic tone reproduction. The model incor-
porates a multiscale representation of luminance, pattern, and color
processing in human vision that accounts for the changes in thresh-
old visibility, visual acuity, color discriminability, and suprathresh-
old brightness, colorfulness, and apparent contrast that occur with
changes in scene illumination. We incorporate the model into a
tone reproduction operator that maps the vast ranges of radiances
found in real and synthetic scenes into the small fixed ranges avail-
able on conventional display devices such as CRT’s and printers.
The model allows the operator to address the two major problems
in realistic tone reproduction: images of wide absolute range and
high dynamic range scenes can be displayed; and the displayed
images match our perceptions of the scenes at both threshold and
suprathreshold levels to the limits possible on a given display.

2 BACKGROUND

2.1 Adaptation and Visual Thresholds

The range of light we encounter in natural scenes is vast, but the
responsive range of the neurons that make up the visual system is

small. Our visual system copes with this vast range of illumination
throughadaptation. Although adaptation allows the visual system
to function over a wide range of illumination levels, this does not
mean that we see equally well at all levels. At low,scotopiclevels
our eyes are very sensitive and can detect small luminance differ-
ences, however visual acuity and the ability to discriminate colors
are both poor. In contrast, at high,photopiclevels, we have sharp
color vision, but absolute sensitivity is low and luminance differ-
ences have to be large to be detectable. To produce realistic images
that capture the visual appearance of scenes we need to understand
these adaptation-related changes in vision.

The effects of adaptation on visual sensitivity have been mea-
sured in threshold experiments. Figure 1a shows the results of a
threshold experiment that measured the changes in visibility that
occur with changes in the level of illumination. The curves plot
the smallest luminance increment∆L that can be detected at a par-
ticular background luminanceL and are known as threshold-vs.-
intensity (TVI) functions. The two curves show the TVI functions
for the rod and cone systems.

Over a wide range of background luminances, the size of the
threshold increment increases in proportion to the background lu-
minance making the functions linear on a log-log scale. This linear
relationship∆L = kL is known asWeber’s lawand indicates that
the visual system has constant contrast sensitivity since theWeber
contrast∆L/L is constant over this range.

Constant contrast sensitivity is a desirable attribute for the vi-
sual system to have, since contrast in the retinal image is a func-
tion of surface reflectances and is invariant with respect to changes
in the level of illumination. This “discounting of the illuminant”
through adaptation is a major factor in perceptual constancy which
underlies our ability to recognize objects under different illumi-
nation conditions [Shapley84]. Weber-like adaptation processes
within the different cone systems (known as von Kries adaptation
[Wyszecki82]) can also help explain chromatic adaptation and the
perceived constancy of surface colors as the chromaticity of the il-
luminant changes.

2.2 Threshold Models of Spatial Vision

Although the TVI functions shown in Figure 1a give us useful in-
formation about the changes in visual sensitivity that occur with



Figure 2:Threshold contrast sensitivity as a function of spatial frequency
for a monochromatic luminance grating(◦; green; 526nm) and a isolu-
minant chromatic grating(2; red/green; 602, 526nm). Adapted from
[Mullen85].

changes in the level of illumination, it’s difficult to understand how
to generalize from the results of these studies on the detectability
of spots on uniform backgrounds to predicting the visibility of real
objects (e.g. tanks, tumors) in complex scenes. In the 1960’s vi-
sion researchers began to measure visual sensitivity for sinusoidal
grating patterns to understand the properties of spatial vision.

The contrast sensitivity functions (CSF’s) shown in Figure 2
plot visual sensitivity for detecting sinusoidal gratings as a func-
tion of their spatial frequency. Here sensitivity is defined as
(1/threshold contrast) using theMichaelsondefinition of contrast:
(Lmax − Lmin)/(Lmax + Lmin) whereLmax andLmin are the
luminances at the peaks and troughs of the gratings [Laming91].

There is substantial evidence that the responses of the rod and
cone photoreceptors are organized at an early stage in the visual
system into responses in an achromatic channel sensitive to lumi-
nance variations and two chromatic channels, one sensitive to vari-
ations along a red/green axis and the other sensitive along a yel-
low/blue axis [Hurvich81]. The two curves in Figure 2 show the
CSF’s of the achromatic and red/green chromatic channels.

There are several things to notice about the CSF’s. The first is
that the spatial frequency response of the achromatic channel(◦)
has the characteristics of a bandpass filter. Contrast sensitivity is
highest for gratings with frequencies around 2 to 4 cycles/degree of
visual angle(cpd) and sensitivity drops for both higher and lower
spatial frequencies. On the other hand, the spatial frequency re-
sponse of the red/green chromatic channel(2) has the characteris-
tic of a lowpass filter. Sensitivity is good for low spatial frequen-
cies, but declines at higher frequencies. The contrast sensitivity
function of the yellow/blue channel shows a similar pattern of re-
sponse after correction for chromatic aberration.

The high frequency cutoffs of the CSF’s indicate the limits of
spatial resolution in the two channels. The achromatic channel has
a cutoff at approximately 30cpd which is in good correspondence
with the limits of visual acuity measured in clinical tests. The high
frequency cutoff for the chromatic channels is only around 11cpd.
This means that the chromatic channels have much lower spatial
resolution than the achromatic channel.

The contrast sensitivity functions have been widely used to
model the visual system’s response to complex objects. If the im-
age of an object can be described in terms of its sinusoidal Fourier
components, then the visibility of that object can be measured by
applying the contrast sensitivity function to the components. When
the components are above threshold the object will be seen, when
they’re below threshold it will be invisible.

This approach to predicting the visibility of complex objects has

Figure 3:Contrast sensitivity functions for sinusoidal gratings illuminated
at different mean luminance levels. Levels are specified in Troland(Td)
units of retinal illuminance (Trolands = luminance incd/m2 x pupil area).
Adapted from [vanNes67].

been widely used, but there is a severe limit on its generality that is
often overlooked which will lead to gross errors in the predictions,
namely that all the grating patterns used to measure the CSF’s have
the same mean luminance. While the contrast sensitivity functions
show how sensitivity varies with spatial frequency, they do not take
into account the changes in sensitivity caused by adaptation. To
account for changes in the visibility of real objects in real scenes,
we need to understand the interactions of adaptation with threshold
spatial vision.

2.3 Adaptation and Threshold Spatial Vision

The results of a classic study on the effects of adaptation on thresh-
old spatial vision are shown in Figure 3. van Nes [1967] measured
contrast sensitivity functions for achromatic gratings illuminated at
a wide range of different levels. Each curve in the graph represents
the CSF measured at a particular luminance level.

There are several things to notice in the graph. The first is that
overall, contrast sensitivity improves with the level of illumination.
Peak contrast sensitivity changes from a value of 8 (threshold con-
trast of 12%) at an illumination level of 0.0009 Trolands(Td) to a
value of 500 (threshold contrast of 0.2%) at 5900Td.

The next thing to notice is that the shape of the CSF changes
from being lowpass at the lowest illumination levels to being band-
pass at higher levels. This reflects the transition from rod vision in
the scotopic range to cone vision at photopic levels.

The final thing to notice is that as the level of illumination in-
creases, the high frequency cutoff of the CSF moves to higher and
higher spatial frequencies. This corresponds to the improvement in
spatial resolution and visual acuity that we experience at higher lu-
minance levels. The cutoff changes from about 4cpd at 0.0009Td
to about 50cpd at 5900Td which corresponds to an improvement
in acuity from around 20/150 at the lowest level to almost 20/10 at
the highest.

The curves in Figure 3 show the effects of adaptation on spatial
contrast sensitivity in the achromatic channel of the visual system.
Data from van der Horst [1969] shows a similar pattern of results
in the chromatic channels.

These data begin to give us a clearer picture of the interactions
between adaptation and threshold spatial vision. From these data
we can begin to understand in a unified framework, the changes in



Figure 4:Multiscale bandpass mechanisms underlying the contrast sensi-
tivity functions. Adapted from [Lubin95].

visibility, acuity, and color discrimination that occur with changes
in the level of illumination. However there is one more aspect of
these interactions that we need to investigate to have a more com-
plete understanding, and this is the effect of local adaptation.

2.4 Local Adaptation and Multiscale Models of
Threshold Spatial Vision

As we look from place to place in a scene our eyes adapt locally
to the prevailing conditions of illumination. This local adaptation
greatly enhances our ability to see in high dynamic range scenes
where some portions of the scene are brightly illuminated and oth-
ers are in shadow. How does local adaptation work?

Physiological and psychophysical evidence now indicates that
the early stages of visual processing can be described as the filter-
ing of the retinal image by visual mechanisms sensitive to patterns
of different scale whose response characteristics are bandpass in
the spatial frequency domain [Wilson91]. These multiple mecha-
nisms are sensitive to different ranges of spatial frequencies, and the
CSF’s that are measured in psychophysical experiments are the en-
velope of these mechanism sensitivities. Figure 4 shows the achro-
matic CSF described in this way. Losada [1994] has shown that the
chromatic CSF’s can be described in a similar way.

Now if we look back at van Nes’s data (Figure 3) on the changes
in spatial contrast sensitivity that occur with changes in the level of
illumination, it can be seen that the CSF curves don’t simply shift
upwards with increasing illumination, but change shape as well.
This is a reflection of the fact that these bandpass mechanisms adapt
to the average luminance within a region of a scene defined by their
spatial scale. In a complex scene, this average is going to be dif-
ferent at different scales so the mechanisms will all be in different
states of adaptation.

Thus local adaptation is not only spatially local within different
regions of the visual field, but is also local with respect to the scale
and spatial frequency filtering characteristics of the bandpass mech-
anisms involved in early visual processing. Therefore, to correctly
account for the changes in visual sensitivity that occur with changes
in the level of illumination, we need to describe the effects of local
adaptation at different spatial scales.

Peli [1990] has suggested that an appropriate way to characterize
the effects of local adaptation is to determine theband-limited local
contrastat each location in the scene. Band-limited local contrast
is calculated by first filtering the retinal image into a set of band-
pass images defined by the filter characteristics of the visual mech-

Figure 5:Threshold-vs.-intensity functions for spot patterns with different
spatial and temporal parameters. Adapted from [Barlow72].

anisms, and then dividing the signals in these images by lowpass
images that represent the average local luminance at each location
in the image at different spatial scales. This produces a multiscale
representation of the image where the signals in each band repre-
sent the effective contrasts at each scale, having taken the effects
of local adaptation into account. Both Peli and Lubin [1995] have
shown that this kind of representation corresponds well with per-
ceived threshold contrasts in complex images.

2.5 Suprathreshold Models of Vision

Threshold models of vision allow us to define the borders between
the visible and the invisible. These models have a long and use-
ful history in applied vision research, but because threshold models
only define the limits of vision, they don’t really tell us much about
ordinary “seeing” where the contrasts, sizes of spatial details, and
color saturations are typically well above threshold. To character-
ize how changes in the level of illumination affect the everyday
appearances of objects in scenes, suprathreshold models of vision
are needed.

Stevens’ [1961] model of brightness and apparent contrast
shown in Figure 1b summarizes much of what is known about the
intensity dependence of surface appearance at suprathreshold lev-
els. Stevens had subjects estimate the apparent brightnesses of gray
patches seen against a white surround at different illumination lev-
els. The brightness of the surround increased as a power function
(exponent 0.33) of its luminance. The brightnesses of the gray
patches either increased, decreased or remained constant depend-
ing on their contrast with respect to the surround. Overall, the di-
verging curves quantify a familiar aspect of our visual experience:
as we turn up the light, the world becomes more vivid. Whites
become brighter, blacks become deeper and the whole range of ap-
parent contrasts expands. Although Stevens only tested achromatic
surfaces, Hunt [1995] has measured a related set of phenomena for
chromatic displays, where the vibrancy andcolorfulnessof colored
surfaces increases at higher levels of illumination.

While these suprathreshold changes in brightness, colorfulness,
and apparent contrast are certainly true to our everyday experience,
it is difficult to reconcile these results with the predictions of thresh-
old models and Weber’s law which show that adaptation produces
a visual system with constant contrast sensitivity, and imply that
apparent suprathreshold contrasts should be constant over changes
in the level of illumination within the Weber range. Differences
in the TVI functions for different kinds of visual stimuli suggest a
solution to this conundrum.



Figure 6:Suprathreshold contrast constancy and non-linear contrast transducers in human vision. Adapted from [Georgeson75, Watson97b].

2.6 Adaptation and Suprathreshold Vision

Figure 5 shows photopic TVI functions measured by Barlow [1972]
for incremental spot patterns with different spatial and temporal
characteristics. The lower curve shows thresholds measured for a
large spot presented in a long exposure. The upper curve shows
thresholds for a small, briefly flashed spot. There are two im-
portant differences between the curves. First, threshold values
for the large/long spot are everywhere lower than thresholds for
the small/brief spot. Second, although the slope of the large/long
TVI curve follows Weber’s law at higher background levels, the
short/brief TVI has a lower slope indicating sub-Weber behavior.

The significance of the differences between these two TVI’s is
that low threshold values, and the constant contrast sensitivity im-
plied by Weber’s law, are only obtained under optimal conditions in
laboratory experiments, such as those shown in the lower curve in
this experiment or those given in the experiments that measured the
rod and cone TVI’s shown in Figure 1a. The TVI function for the
small/brief spot is more like what we should expect under natural
conditions where our eyes are continually moving across a complex
scene and both the visual stimuli and our state of adaptation will be
changing rapidly. Here threshold sensitivity is limited by both in-
complete adaptation and quantal fluctuations in the stimulus, mak-
ing thresholds higher-than-optimal, but also producing a TVI with
a sub-Weber slope, where threshold contrast sensitivity continues
to improve at higher illumination levels because the magnitude of
the visual response to a constant physical contrast increases as the
level of illumination rises. The insights provided by this experi-
ment are the key that allow us to unify the predictions of threshold
and suprathreshold models in one coherent framework. To com-
plete the picture we’ve been developing of a model that can ex-
plain the interactions of adaptation and spatial vision at threshold
and suprathreshold levels, we need to understand the properties of
suprathreshold spatial vision.

2.7 Adaptation and Suprathreshold Spatial Vision

A CSF describes how threshold contrast sensitivity varies for sinu-
soidal gratings of different spatial frequencies. The upper curve
in Figure 6a shows an achromatic CSF measured by Georgeson
[1975]. This typical curve shows that we are most sensitive to grat-
ings with frequencies around 4-5cpd and that sensitivity falls off at
both higher and lower frequencies. This CSF was measured as part
of a suprathresholdcontrast matchingexperiment. In this experi-
ment subjects matched the apparent contrast of different frequency
test gratings to the apparent contrast of a standard grating of 5cpd.
In separate trials, the physical contrast of the standard was varied
from less than 1% to more than 75%. The lower curves in Figure 6a
summarize the results.

At low standard contrasts, the matches followed the form of the
threshold CSF. High and low frequency gratings had to have higher
physical contrast to have the same apparent contrast as the stan-
dard. But at standard contrasts above about 20% the curves flat-
tened out. Gratings matched in apparent contrast when they had the
same physical contrast. Georgeson called this phenomenoncon-
trast constancy.

The differences in the shapes of the threshold CSF and the
suprathreshold contrast matching functions indicates the existence
of nonlinear contrast transduction processes in the visual system.
Brady [1995] has suggested that these contrast nonlinearities reflect
differences in the signal/noise characteristics of the bandpass visual
mechanisms which can explain both the curvature of the threshold
CSF and the flatness of the suprathreshold contrast matching func-
tions.

Watson and Solomon [1997b] have developed a model of these
contrast nonlinearities as part of their work on the closely related
phenomenon of visual masking. The transducer functions for a set
of hypothetical bandpass mechanisms are shown in Figure 6b. The
horizontal axis indicates the input contrast, the vertical axis plots
the response. At low input contrast levels, the transducers all have
different cutoffs. The differences in these cutoffs imply that the
mechanisms all have different sensitivities, since at any particu-
lar low level, the input signal will be above the cutoffs for some
mechanisms and below for others. This characteristic of the trans-
ducer functions accounts for CSF-like responses at low contrast lev-
els. But at higher input contrast levels, the transducer functions
converge, which means that given the same input contrast, all the
mechanisms will produce the same response. This characteristic ac-
counts for the contrast constancy observed at higher contrast levels.
The action of these transducer functions, which mimics the contrast
nonlinearity in the visual system, provides a coherent framework
for understanding threshold and suprathreshold spatial vision.

2.8 Summary

In the previous sections we have outlined a coherent framework for
understanding the changes in vision that occur with changes in the
level of illumination in scenes. The framework relates research on
adaptation with research on spatial vision to provide a unified view
of variations in threshold performance and suprathreshold appear-
ance at different illumination levels. The framework allows us to
account for the changes in threshold visibility, visual acuity, and
color discrimination, and suprathreshold brightness, colorfulness,
and apparent contrast that occur under different illumination condi-
tions. The key features of the framework are:

• Multiscale processing of the retinal image by visual mech-
anisms in the rod and cone pathways with bandpass spatial



frequency response characteristics.

• Adaptation processes operating within these bandpass mech-
anisms that act as “luminance gain controls” to produce vi-
sual signals that are primarily correlated with scene contrasts,
but are still luminance dependent and increase in magnitude
with increasing luminance. Independent adaptation processes
within the bandpass mechanisms in the rod and cone path-
ways account for “local” adaptation, chromatic adaptation,
and changes in sensitivity over the scotopic to photopic range.

• Organization of the bandpass mechanisms in the rod and cone
pathways into an achromatic and two chromatic channels with
different spatial frequency response characteristics.

• Nonlinear transducers operating on the adapted outputs of
the mechanisms in these achromatic and chromatic channels
that scale the visual signals to produce CSF-like response at
threshold levels, and contrast constancy at suprathreshold lev-
els.

In the following section we will develop a computational model
of vision based on this framework and apply it to the problem of
realistic tone reproduction. The unique features of the model will
allow our tone reproduction operator to address the two major prob-
lems in realistic tone reproduction: images of wide absolute range
and high dynamic range scenes can be displayed on conventional
display devices; and these images should match our perceptions of
the scenes at threshold and suprathreshold levels.

3 THE COMPUTATIONAL MODEL

3.1 Overview

We will now draw on the psychophysical framework outlined in
the previous section to develop a computational model of adapta-
tion and spatial vision for realistic tone reproduction. Figure 7 pro-
vides a flow chart of each major step in this computational model.
The model has two main parts: theVisual modeland theDisplay
model. The visual model processes an input image to encode the
perceived contrasts for the chromatic and achromatic channels in
their band-pass mechanisms. The display model then takes this en-
coded information and reconstructs an output image. The model
must be inverted in order to produce equivalent appearances un-
der the viewing conditions of the display device. This procedure
does not “undo” the processes of the model since the thresholding
and saturation procedures are accomplished and the gain control
parameters differ for the original scene and the display. The recon-
struction process creates an output image that reproduces the visual
appearance of the input image to the limits possible on a given dis-
play device. The specific computational procedures that were used
to implement each step of the model are described below. A pic-
torial representation of the signals at each stage of the model is
presented in Figure 8.

3.2 Input Image Preprocessing

Prior to applying the visual model, certain preprocessing steps are
required to assure that the image data appropriately correspond to
the information accessible to the early stages of the human visual
system. First, the image must be spatially sampled such that the
band pass signals represent appropriate spatial frequencies. For this
implementation, band pass mechanisms with peak spatial frequen-
cies of 16, 8, 4, 2, 1, and 0.5 cpd were required. The spatial sam-
pling necessary to produce these band-pass signals depends upon
the Gaussian filters chosen for the image decomposition. With the
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Figure 7:Flow chart of the computational model of adaptation and spatial
vision for realistic tone reproduction.

filter described in Section 3.3 it is necessary to sample the image at
a rate of 130 pixels/degree.

The next step is to introduce compensations for optical point-
spread in the eye and disability glare. Optical point-spread is incor-
porated via a convolution with a function described by Westheimer
[1986] and glare effect is introduced via convolutions with func-
tions described by Spencer [1995].

The image must then be spectrally sampled to represent the vi-
sual system’s initial photoreceptor responses. This is accomplished
by integrating the spectral radiance distribution for each pixel after
multiplication by the spectral responsivities of the long-, middle-
and short-wavelength sensitive cones (LMS) and the rods. We
use the Hunt-Pointer-Estevez [Fairchild98] responsivities for the
cones and the CIE scotopic luminous efficiency function,V ′(λ),
[Wyszecki82] for the rods.

In many applications, a spectral radiance image is not available.
In such cases, the cone signals can be calculated as a linear trans-
form of the CIE 1931 XYZ tristimulus values as shown in Equa-



tion 1.∣∣∣∣∣ LMS
∣∣∣∣∣ =
∣∣∣∣∣ 0.3897 0.6890 −0.0787
−0.2298 1.1834 0.0464
0 0 1

∣∣∣∣∣
∣∣∣∣∣ XYZ

∣∣∣∣∣ (1)

However, it is impossible to obtain the proper rod signals. We
derived a linear transform of XYZ tristimulus values as a rough
approximation to the rod signal via linear regression of the color
matching functions and theV ′(λ) curve. The resulting transform
is given in Equation 2 whereR represents the rod response for a
pixel.

R = −0.702X + 1.039Y + 0.433Z (2)

Since it is possible to obtain negative values ofR when Equation 2
is applied to some saturated colors, it must be clipped to zero. We
chose a simple linear transformation for this approximation since it
scales over any range of luminance levels.

Finally the input signals must be calibrated prior to input to the
visual transforms. We chose to calibrate the model such that the
LMS cone signals and the rod signal are all equal to unity for an
equal-radiance spectrum at a luminance of 1.0 cd/m2.

3.3 Spatial Decomposition

The 4 images representing the calibrated photoreceptor responses
are then subjected to spatial processing. The first step is to carry
out the spatial decomposition of these images. We carry out this
decomposition by the Laplacian pyramid (difference-of-Gaussian
pyramid) approach proposed by Burt and Adelson [1983]. This
approach guarantees the construction of a non-negative low-pass
image in high dynamic range situations, and is perfectly invertible.
We first calculate a Gaussian pyramid using a 5 tap filter (with 1D
weights: .05 .25 .4 .25 .05) [Burt83]. Each level of the Gaussian
pyramid represents a low-pass image limited to spatial frequencies
half of those of the next higher level. Our Gaussian pyramid has 7
levels.

Each level of the Gaussian pyramid is then upsampled such that
each image is returned to the size of the initial image. Difference-
of-Gaussian images are then calculated by taking the image at each
level and subtracting the image from the next lower level. This re-
sults in 6 levels of band-pass images with peak spatial frequencies
at 16, 8, 4, 2, 1, and 0.5 cpd. These images can be thought of as
representations of the signals in six band-pass mechanisms in the
human visual system. The lowest-level low pass image is retained
since it must be used to reconstruct the image for reproduction ap-
plications.

3.4 Gain Control

The difference-of-Gaussian images are then converted to adapted
contrast signals using a luminance gain control. The gains are set
using TVI-like functions that represent the increment thresholds
of the rod and cone systems and the growth in response required
to allow perceived contrast to increase with luminance level (sub-
Weber’s law behavior). The gain functions are given for the cones
in Equation 3 and the rods in Equation 4.

Gcone(I) =
1

0.555(I + 1.0)0.85
(3)

Grod(I) =
[
10

I2 + 10

] [
1

0.908(I + 0.001)0.85

]
(4)

In the above equations,I represents the rod or cone signal that
is used to set the level of adaptation andG(I) is the gain-control
factor. Equations 3 and 4 were derived to match available psy-
chophysical TVI and brightness matching data. The constraints in

Figure 8: Pictorial representation of the computational model. Note that
only 2 out of the 6 spatial mechanisms of one of the channels have been
shown for the purpose of illustration. Original image is a Snellen chart with
a 30:1 shadow boundary.

their derivation were that both the rod and cone gains were set equal
to 1.0 at a 1.0 cd/m2, the absolute thresholds would be around 1.0
cd/m2 for cones and 0.001 cd/m2 for rods, the ultimate slopes of
the functions would be 0.85 for sub-Weber’s Law behavior, and the
rods would saturate, losing 50% of their responsivity at roughly 3
cd/m2. In our model, each pixel in a given difference-of-Gaussian
image is multiplied by the gain derived from the corresponding
pixel in the lower-level low-pass image that was used in its deriva-
tion. This is illustrated in Equation 5.

ACIn = G (LPn+1) [LPn − LPn+1] (5)

ACIn is the adapted contrast image at leveln andLP repre-
sents the various low-pass images. The adapted contrast images are
analogous to the contrast images that Peli [1990] obtained. How-
ever, in our model the magnitude of these images is a function of
luminance level as specified by the gain control functions. This is
necessary to allow prediction of luminance-dependent appearance



effects. The luminance gain controls are applied in the same man-
ner to each of the difference-of-Gaussian images for each of the
photoreceptors. Equation 3 is used to calculate the gains for each
of the cones and Equation 4 is used for the rods. Note that per-
forming the gain control at this point in the model allows proper
prediction of chromatic-adaptation effects.

3.5 Opponent Color Processing

The next stage of the model is to transform the adapted contrast
images for the cones into opponent signals. We use the transform
of Hunt [1995] that has also been recently adopted in the CIE color
appearance model, CIECAM97s [Fairchild98] as given in Equation
6. ∣∣∣∣∣ AC1C2

∣∣∣∣∣ =
∣∣∣∣∣ 2.0 1.0 0.05
1.0 −1.09 0.09
0.11 0.11 −0.22

∣∣∣∣∣
∣∣∣∣∣ LMS

∣∣∣∣∣ (6)

In the above equation,L,M , S represent the cone signals andA,
C1, C2 represent luminance, red-green, and yellow-blue opponent
signals respectively. This transform is applied without modification
to the adapted contrast signals to obtain adapted contrast signals in
an opponent color space. This transformation is necessary to model
differences in the spatial processing of luminance and chromatic
signals. At this stage, the rod images are retained separately since
their spatial processing attributes also differ from the cones.

3.6 Adapted Contrast Transducers

The adapted contrast signals are then passed through contrast trans-
ducer functions similar to those described by Watson and Solomon
[1997]. Different transducer functions are applied to each spatial
frequency mechanism in order to model psychophysically derived
human spatial contrast sensitivity functions. For example, the trans-
ducer for the 16 cpd achromatic mechanism has a higher threshold
than the transducer for the 4 cpd achromatic mechanism since we
are less sensitive to the higher spatial frequencies. The transducers
are also different for the chromatic channels to represent their lower
sensitivities and low-pass, rather than band-pass nature. Finally, the
rod system has a distinct set of transducers to represent its unique
spatial characteristics. At high contrast levels the transducer func-
tions converge to a common square-root form to properly represent
perceived contrast constancy and introduce a compressive nonlin-
earity typically found in color appearance models. The functional
form of our transducer functions vary from that proposed by Wat-
son and Solomon [1997] since their function was not analytically
invertible and it is necessary to invert our model for image repro-
duction applications. We chose to use a two-part function consist-
ing of two power functions in order to replicate the two regions of
distinct slope in the transducer functions. The contrast transducers
used in our model are given by Equations 7 and 8 for the cones and
Equation 9 for the rods.

Tcone,Achromatic(c) =

{
22.4 (c/0.536)

1
2 if c ≥ 0.536

22.4 (c/0.536)p otherwise.
(7)

Tcone,Chromatic(c) =

{
22.4 (c/0.176)

1
2 if c ≥ 0.176

22.4 (c/0.176)p otherwise.
(8)

Trod(c) =

{
22.4 (c/0.0335)

1
2 if c ≥ 0.0335

22.4 (c/0.0335)p otherwise.
(9)

In the above equations,c represents the adapted contrast signals
(ACI ’s) andT (c) represents the output of the transducers. The ex-
ponent,p, in Equations 7, 8 and 9 differs for each spatial frequency
mechanism as given in the following table.

Peak(cpd) .5 1.0 2.0 4.0 8.0 16.0
p for A 1.93 1.35 1.15 1.04 1.15 1.40

p for C1&C2 1.93 1.93 2.35 2.85 - -
p for Rod 3.39 3.39 4.50 7.64 - -

If c is negative, the absolute value ofc is taken and then the negative
sign is replaced after transformation.

Equations 7 through 9 were derived by specifying the desired
thresholds for the various spatial and chromatic mechanisms at
1000 cd/m2 for the cones and 0.5 cd/m2 for the rods. The lower
parts of the functions were forced to pass through 1.0 for the de-
sired threshold contrast. At sinusoidal contrasts greater than 5%
(at these calibration luminance levels) the functions converge to the
square-root form that produces contrast constancy. The square root
is derived to mimic the compressive nonlinearities typically found
in color appearance models. These transducers do produce CSF be-
havior that changes with luminance as illustrated in Figure 3 since
the input adapted contrast signals vary with luminance due to the
sub-Weber gain control functions. Transducers for the chromatic
cone channels and the rod channel do not exist for spatial frequen-
cies above those represented by the mechanism centered at 4 cpd
since these systems cannot resolve contrast at higher spatial fre-
quencies. (Note that the 4 cpd mechanism carries information out to
about 16 cpd which is thus the acuity limit of the mechanism.) The
contrast transducer functions are calibrated such that psychophys-
ical contrast sensitivity function data are modeled and sinusoidal
contrasts above about 5% produce contrast constancy as a func-
tion of spatial frequency and sinusoidal contrasts of 100% produce
transducer output of approximately 100. It should be recalled that
in our model, these levels will be luminance dependent. The con-
trast transducer functions are also designed such that contrasts that
are below threshold have an output level with magnitude less than
1.0.

One of the key functions of the transducers is to set the threshold
level such that image content that is imperceptible for a given set of
viewing conditions can be removed. To accomplish this, the output
of the transducer functions is thresholded such that all absolute val-
ues less than 1.0 are set to 0.0. An alternative approach would be
to replace all absolute values less than 1.0 with a random number
between 0.0 and 1.0. This might better replicate the appearance of
visual noise at low contrast levels.

In addition to establishing thresholds, the transducer functions
are used to model saturation of the visual neurons that signal con-
trast. Thus, the transducer functions are limited to maximum values
of 50 to simulate the typical physiological dynamic range. [Hunt95]
Since the contrast mechanisms are bipolar, this represents a 100:1
dynamic range in each spatial mechanism and therefore even larger
perceptual dynamic ranges in fully reconstructed images. This sat-
uration is also not a severe restriction on the image content since
the gain control mechanisms already accomplish a high degree of
dynamic-range compression.

3.7 Combination of Rod and Cone Signals

Up to this point in the model it is necessary to keep the rod signals
separate in order to appropriately integrate their unique adaptation
and spatial vision properties. After the contrast transducers, the rod
and cone signals can be combined to produce signals that represent
the three-dimensional color appearances of the input image. We as-
sume that the rods contribute only to the luminance signal and thus
combine theA signal from the cones with the rod signal, denoted
Arod, to produce a total achromatic signal,Atotal, using Equation
10.

Atotal = Acone + Arod/7 (10)

The differential weighting of the rod and cone signals is a result
of the model calibration necessary to establish the rod and cone gain



controls and transducer functions. It results in a total achromatic
output that is monotonic with luminance.

At this stage in the model we have three channels represent-
ing achromatic, red-green, and yellow-blue apparent contrast for
6 band-pass mechanisms. These signals model threshold behavior,
in that any contrast signals that could not be perceived have been
eliminated at the contrast transducer functions. They also repre-
sent suprathreshold appearance since the contrast signals grow with
luminance and the chromatic channels will become zero at lumi-
nance levels below the cone threshold. At this stage, the model has
also accomplished a significant level of dynamic-range compres-
sion since the contrast signals range only 2 orders of magnitude (1
to around 100) for luminance differences ranging over 10 orders
of magnitude. This compression is accomplished by both the gain
control functions and the nonlinear transducers.

3.8 Treatment of the Low Pass Image

The lowest level low-pass image from the upsampled Gaussian
pyramid must be retained in order to reconstruct an image from the
adapted contrast images that have been passed through the model
(each a band-pass image). To this point, we have not discussed the
application of the visual model to this low pass image. The best
approach to processing the low-pass image depends on the applica-
tion. For simple images of low dynamic range (e.g., less than 50:1),
an appropriate treatment of the low-pass image is to multiply it by
a constant gain factor derived from the image mean. This technique
will do little to compress the range of high-dynamic range images
since the contrast within the low pass image will be preserved. An
alternative that produces maximum dynamic-range compression is
to multiply each pixel in the low-pass image by a gain factor derived
from the pixel itself. (The gain factors are derived using Equations
3 and 4.) Techniques intermediate between these two might pro-
duce optimal image reproductions for various applications. The
above treatment of the low-pass image is consistent with the full
model of visual perception and can be thought of as a treatment of
the effects of eye movements on the perception of a scene. In the
extreme case of adapting the low pass image to its own values, the
treatment mimics the visual response assuming that observer fix-
ated on each and every image location and judged them completely
independent of one another. For the other extreme case of adapting
the low pass image using the mean signal, the treatment simulates
completely random and continuous eye movements uniformly dis-
tributed across the scene. Intermediate treatments between these
two extremes might more accurately model real world eye move-
ments which are scene dependent and represent some average be-
tween fixating each image element of interest and randomly view-
ing all locations in a scene.

Transducer functions are necessary for the low pass image as
well since the rod and cone information is combined after the trans-
ducer stage. We have adopted low-pass transducers that are simple
power functions based on typical practice in color appearance mod-
eling. [Fairchild98] The scaling of the low-pass transducers is set to
preserve equal magnitude of signals for the low-pass and band-pass
model output for a sinusoidal grating. The low-pass transducers are
given in Equations 11, 12 and 13 for the achromatic and chromatic
cone signals and rod signals respectively.

TLP cone,Achromatic(LP ) = 30.5 (LP )
1
2 (11)

TLP cone,Chromatic(LP ) = 53.3 (LP )
1
2 (12)

TLP rod(LP ) = 122 (LP )
1
2 (13)

T represents the output of the low-pass transducers andLP repre-
sents the pixel values in the adapted, opponent-transformed, low-
pass image.

3.9 Image Reconstruction for Display

The output of the visual model consists of appearance signals in an
achromatic and two chromatic channels and six spatial band-pass
mechanisms plus a low-pass image. We now take these appearance
signals backward through the model to recreate cone signals (and
ultimately device signals such as RGB or CMYK) that replicate
the full color appearance of the image on a photopic, trichromatic
display device such as a CRT display.

The first step of the inversion process is to go through the inverse
of the transducer functions given in Equations 7, 8, 11 and 12. The
AC1C2 signals are then transformed to adapted LMS cone signals
using the inverse of the matrix transformation given in Equation
6. At this point we have adapted contrast signals that have been
subjected to the appropriate visibility thresholding and saturation
by the contrast transducer functions.

The next step is to reverse the gain control process for the view-
ing conditions of the output display. This begins by determining
the gain control factors for the mean luminance of the target display
device using Equation 3. The adapted low-pass images are then di-
vided by the display-mean gain control factors to produce images
that represent the appropriate LMS cone responses for the display
low-pass image. This display low-pass image is then used to begin
the process of reconstruction of a full-resolution image from the six
adapted contrast signal images.

Gain control factors are calculated for each pixel of the display
low-pass image using Equation 3 and these are used to scale the
lowest frequency (0.5 cpd peak) adapted contrast signal image back
to the display. This image is then added to the low-pass image to
produce a new low-pass image that includes the contrast informa-
tion from the 0.5 cpd image. This image is then used to calculate
gain control factors that are applied to the next level (1.0 cpd peak).
The resulting image is again added to the new low-pass image to
generate yet another low-pass image that incorporates the informa-
tion from both the 0.5 and 1.0 cpd mechanisms. The process is
repeated at each level until all of the spatial frequency mechanisms
have been scaled to the display and added to the output image.

At this point in the reconstruction we have an LMS image rep-
resenting the cone signals that are desired when viewing the out-
put display. These must be converted to signals appropriate for the
given display device using typical device-independent color imag-
ing procedures. For a CRT this involves a linear transform from
LMS to CIE XYZ (inverse of Equation 1) followed by a second lin-
ear transform from CIE XYZ to device RGB. The second transform
is defined by the CIE tristimulus values of the display primaries. At
this point we have linear RGB signals that must either be trans-
formed through the inverse of the CRT display transfer function
(often referred to as gamma correction) or displayed on a system
with linearizing video look-up tables. A similar, although more
complex, process is required for printing devices.

Finally, it is not uncommon that the desired display colors simply
cannot be produced on a given device (i.e., they are out of gamut).
This includes the mapping of the desired luminance level and range
into that of the display. There are a wide variety of techniques that
have been suggested to address this issue the details of which are
beyond the scope of this paper. The approach that is taken depends
on the particular application. Some of the issues that are encoun-
tered with this particular model are discussed in the next section
with respect to the rendering on paper and on CRT monitor of the
various example images.



Figure 9:Application of the model to a wide range of illumination levels.

4 APPLYING THE MODEL

4.1 Wide Absolute Range

The series of images in Figure 9 illustrate application of the model
to a wide range of luminance levels spanning six orders of mag-
nitude from 0.1 to 10,000 cd/m2. These images were created us-
ing the model as described in section 3 with the low-pass images
adapted to the mean luminance of the input images. The size of
the original image was about 15◦ × 10◦. For image reconstruction
as printed images, a mean adapting luminance of 700 cd/m2 was
assumed. This is approximately the luminance of a standard print
viewing booth. Thus this series of images should provide faithful
reproductions of the visual impression at the various luminance lev-
els when the printed figure is viewed at a mean luminance of 700
cd/m2. The gamut-mapping selected for this demonstration was a
linear scaling that placed the white areas of the 1000 cd/m2 image
at the paper white. While the model can be applied successfully
over a wider absolute range, it is impossible to reproduce the re-
sults within the limited dynamic range (approximately 50:1) of the
printed images unless a variable scaling is used.

Features to note in Figure 9 include: the decrease in luminance
contrast and colorfulness as luminance is decreased, the loss of
color vision upon the transition from cone to rod vision below 1
cd/m2, the decrease in spatial acuity with decrease in luminance,
and the changes in relative visibility of various colors and patterns.
The Purkinje shift (blue to gray and red to black) is also correctly
predicted upon changes from photopic to scotopic luminance levels.
All of these features illustrate that the model has appropriately en-
coded aspects of threshold visibility and suprathreshold appearance
over a wide range of luminance levels.

4.2 Chromatic Adaptation

Figure 10 shows the unique feature of this model that it can handle
changes in chromatic, as well as luminance-level, adaptation. The
top row of images illustrate a scene illuminated by a very reddish
light source, a nearly-white incandescent light source, and a very

blue light source as they would be rendered by a system incapable
of chromatic adaptation. The shift in color balance of the repro-
duced prints is objectionable since the human visual system largely
compensates for these changes in illumination color through its
mechanisms of chromatic adaptation. Since our model treats gain
control in each of the classes of cone photoreceptors independently,
it is capable of predicting changes in chromatic adaptation simi-
lar to those that would be predicted by a von Kries model. How-
ever, due to the nature of the gain control functions used to obtain
increases in contrast and colorfulness with luminance, the degree
of chromatic adaptation predicted by the model is less than 100%
complete.

The bottom row of images illustrate the output of the visual
model when the low-pass images are adapted to the mean signal
levels in the image and the reconstructed images are created assum-
ing adaptation to an equal-energy white. All of the computations
were completed at a mean luminance of 50 cd/m2. The gamut-
mapping selected for these images was a linear scaling that mapped
100 cd/m2 in the reconstructed image to the monitor white. 100
cd/m2 is approximately the maximum luminance of a display mon-
itor. The sizes of the original images were 10◦× 8◦. These images
illustrate that the model almost completely accounts for the changes
in illumination color. However, as expected the reproduced appear-
ance from the reddish light source retains a slight reddish cast while
the reproduction from the bluish light source retains a slight bluish
cast. These reproductions match our perceptions of changes in il-
lumination color and replicate the incomplete nature of chromatic
adaptation that is widely recognized in the color science literature.
[Fairchild98]

4.3 High Dynamic Range

Figure 11 illustrates application of the model to the tone mapping
of high-dynamic range images. The original images have areas of
detail that are in high illumination levels and other areas that are in
low illumination levels. The left most image in Figure 11 is a global
illumination rendering. The other two were constructed from suc-
cessive photographic exposures using the technique of Debevec and



Figure 10:Illustration of chromatic adaptation.

Malik [1997]. To provide the higher degree of compression nec-
essary for high-dynamic-range mapping, the low pass image was
adapted to itself. The reproduced images were reconstructed for
display at a mean luminance of 50 cd/m2.

The images on the top row of Figure 11 are linear mappings of
the original high-dynamic range images into the limited dynamic
range of the output device. The original images had luminance
ranges of approximately 10,000:1. The images on the bottom row
represent the mapping obtained by application of the visual model.
In Figure 11 it is clear that far more detail can be observed in both
shadow and highlight regions when the images are mapped using
the visual model.

5 CONCLUSIONS AND FUTURE WORK

In this paper we have introduced a new visual model for realistic
tone reproduction. The model is based on a multiscale representa-
tion of luminance, pattern, and color processing in the human visual
system, and provides a coherent framework for understanding the
effects of adaptation on spatial vision. The model allows us to ac-
count for the changes in threshold visibility, visual acuity, and color
discrimination, and suprathreshold brightness, colorfulness and ap-
parent contrast that occur with changes in the level of illumination
in scenes.

We have applied the visual model to the problem of realistic tone
reproduction and have developed a tone reproduction operator that
addresses the two major problems in realistic tone reproduction:
images of wide absolute range and high dynamic range scenes can
now be displayed on conventional display devices like CRTs and
printers; and these images are faithful visual representations that
match our perceptions of the scenes at threshold and suprathreshold
levels to the limits possible on a given display. This work should
have major impact on the field of digital imaging. Scenes that could
never be reproduced before can now be imaged with high visual
fidelity.

Beyond the clear applications of this work in realistic tone re-
production, the visual model presented in this paper can be use-
fully applied in a variety of other areas in digital imaging where
the characteristics of threshold and suprathreshold vision are im-

portant. Potential application areas include: image quality metrics;
image coding and compression methods; perceptually-based image
synthesis algorithms; image-based rendering; and advanced display
system design.

There is still much work to be done in this area. First, this is
a static model of vision. Future models should incorporate knowl-
edge about the temporal aspects of visual processing in order to
allow both dynamic scenes, and scenes where the level of illumi-
nation is dynamically changing to be properly displayed. Second,
we hope to integrate our visual model with ongoing work in the
color science community on appearance models [Fairchild98] for
predicting how images look under different viewing conditions. We
should also draw on the testing methods developed by researchers
in this community to verify that our images are in fact good vi-
sual matches to actual scenes. Finally, a number of researchers
[Gilchrist77, Adelson93] in the vision community have shown that
threshold and suprathreshold properties of scenes aren’t simply a
function of the two dimensional patterns of luminances in the reti-
nal image, but also depend upon our perceptions of the spatial ar-
rangement of surfaces and illumination in three dimensions. Future
work should address how these 3D issues affect our perceptions of
scenes and influence the development of operators for realistic tone
reproduction.
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