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ABSTRACT
In this paper we introduce a new light reflection model for

image synthesis based on experimental studies of surface gloss
perception. To develop the model, we’ve conducted two
experiments that explore the relationships between the physical
parameters used to describe the reflectance properties of glossy
surfaces and the perceptual dimensions of glossy appearance. In
the first experiment we use multidimensional scaling techniques
to reveal the dimensionality of gloss perception for simulated
painted surfaces. In the second experiment we use magnitude
estimation methods to place metrics on these dimensions that
relate changes in apparent gloss to variations in surface
reflectance properties. We use the results of these experiments to
rewrite the parameters of a physically-based light reflection model
in perceptual terms. The result is a new psychophysically-based
light reflection model where the dimensions of the model are
perceptually meaningful, and variations along the dimensions are
perceptually uniform. We demonstrate that the model can
facilitate describing surface gloss in graphics rendering
applications. This work represents a new methodology for
developing light reflection models for image synthesis.
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1. INTRODUCTION
Color and gloss are two fundamental visual attributes used to

describe the appearances of objects in synthetic images. In a
typical graphics rendering application a user specifies an object’s
color as an RGB triple and describes its gloss in terms of the
parameters of a light reflection model such as Phong [Phon75].

In addition to RGB, many rendering applications allow users to
describe color in more perceptually meaningful color spaces such
as HSV, Munsell, or CIELAB, that have grown out of the science
of colorimetry [Wysz82]. Working in these spaces makes it easier
to specify color, because the dimensions of the spaces are
representative of our visual experience of color, and the scaling of
the dimensions is perceptually uniform.

Unfortunately similar perceptually-based spaces for specifying

surface gloss do not yet exist. At the present time the parameters
used to describe gloss are either based on ad-hoc lighting models
such as Phong, or are motivated by research into the physical
aspects of light reflection [Blin77, Cook81, He91, Ward92,
Schl93, LaFo97, Stam99].  In either case, the visual effects of the
parameters are relatively unintuitive and interactions among
different parameters make it difficult to specify and modify
surface gloss properties. A light reflection model grounded in the
visual psychophysics of gloss perception would greatly facilitate
the process of describing surface gloss properties in computer
graphics renderings, and could lead to more efficient and effective
rendering methods.

In this paper we introduce a new light reflection model for
image synthesis based on experimental studies of surface gloss
perception. To develop the model, we have conducted two
psychophysical studies to explore the relationships between the
physical parameters used to describe the reflectance properties of
glossy surfaces and the perceptual dimensions of glossy
appearance. We use the results of these experiments to rewrite the
parameters of a physically-based light reflection model in
perceptual terms. The result is a new psychophysically-based
light reflection model where the dimensions of the model are
perceptually meaningful, and variations along the dimensions are
perceptually uniform. We demonstrate that the model is useful for
describing and modifying surface gloss properties in graphics
rendering applications. However,  the long-term impact of this
work may be even more important because we present a new
methodology for developing psychophysical models of the
goniometric aspects of surface appearance to complement widely
used colorimetric models.

2. BACKGROUND
To develop a psychophysically-based light reflection model for

image synthesis we first need to understand the nature of gloss
perception.

In his classic text, Hunter [Hunt87] observed that there are at
least  six different visual phenomena related to apparent gloss. He
identified these as:

Figure 1: Coffee mugs with different gloss attributes.
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specular gloss – perceived  brightness associated with the
specular  reflection from a surface

contrast gloss – perceived relative brightness of  specularly
and diffusely reflecting areas

distinctness-of-image (DOI) gloss – perceived sharpness of
images reflected in a surface

haze – perceived cloudiness in reflections near the specular
direction

sheen – perceived shininess at grazing angles in otherwise
matte surfaces

absence-of-texture gloss – perceived surface smoothness
and uniformity

Judd [Judd37] operationalized Hunter’s definitions by writing
expressions that related them to the physical features of surface
reflectance distribution functions (BRDFs). Hunter and Judd’s
work is important, because it is the first to recognize the
multidimensional nature of gloss perception.

In 1987 Billmeyer and O’Donnell [Bill87] published an
important paper that tried to address the issue of gloss perception
from first principles. Working with a set of black, gray, and white
paints with varying gloss levels, O’Donnell collected ratings of
the apparent difference in gloss between pairs of samples and then
used multidimensional scaling techniques to discover the
dimensionality of perceived gloss. He concluded that for his
sample set and viewing conditions (flat samples, structured/direct
illumination, black surround) the appearance of high gloss
surfaces is best characterized by a measure similar to distinctness-
of-image gloss, while the appearance of low gloss surfaces is
better described by something like contrast gloss.

In the vision literature, studies of gloss have focused primarily
on its effects on the perception of shape from shading. Todd and
Mingolla [Todd83, Ming86] found that gloss generally enhances
the perception of surface curvature. Blake [Blak90] found
categorical changes in surface appearance and shape depending
on the 3d location of the specular highlight.  Braje [Braj94] found
interactions between apparent shape and apparent gloss, showing
that a directional reflectance pattern was perceived as more or less
glossy depending on the shape of its bounding contour. More
recently Nishida [Nisi98] also studied interactions between shape
and gloss, and found that subjects are poor at matching the Phong
parameters of bumpy surfaces with different frequency and
amplitude components.

Finally, in computer graphics, while there has been extensive
work on developing physically-based light reflection models,
there has been relatively little effort to develop models whose
dimensions are perceptually meaningful. One exception is
Strauss’s model [Stra90], a hybrid of Phong and Cook-Torrance,
that describes surface properties with five parameters: color,
smoothness, metalness, transparency, and refractive index. He
reports that users find it much easier to specify surface gloss with
this model than with others.

There is still much work to be done in this area. First, with the
exception of Billmeyer and O’Donnell’s work there has been little
investigation of the multidimensional nature of glossy appearance
from first principles. Hunter’s observations about visual gloss
phenomena are insightful but we need studies that quantify these
different appearance dimensions and relate them to the physical
properties of materials. Second, all previous gloss studies have
looked exclusively at locally illuminated surfaces in uniform
surrounds. This practice is understandable given the difficulty of
controlling complex environments, but it’s strange considering
that one of the most salient things about glossy surfaces is their
ability to reflect their surroundings. To really understand how we

perceive surface gloss, we need to study three-dimensional objects
in realistically rendered environments. Fortunately, image
synthesis gives us a powerful tool to study the perception of
surface gloss. Physically-based image synthesis methods let us
make realistic images of three-dimensional objects in complex,
globally-illuminated scenes, and gives us precise control over
object properties. By using image synthesis techniques to conduct
psychophysical experiments on gloss perception we should be
able to make significant progress toward our goal of developing a
psychophysically-based light reflection model that can describe
the appearance of glossy materials.

3. EXPERIMENTS
3.1 Motivation
In many ways the experiments that follow are analogous to early

research done to establish the science of colorimetry.  In that
work, researchers wanted to understand the relationships between
the physical properties of light energy, and our perception of
color. Many of the earliest experiments focused on determining
the dimensionality of color perception, culminating with Young’s
trichromatic theory [Helm24].  Following this, further
experiments were done to find perceptually meaningful axes in
this three-dimensional color space. Hering’s work [Heri64] on
opponent color descriptions, falls into this category. Finally, many
experiments have been done to scale these axes and create
perceptually uniform color spaces. Munsell, Judd, and
MacAdam’s efforts to develop uniform color scales are good
examples (see [Wysz82] for a review).

Although we recognize the great effort involved in the
development of color science, our overall goals with respect to
understanding gloss are similar: we are conducting experiments to
understand gloss perception with the goal of  building a
psychophysical model of gloss that relates the visual appearance
of glossy surfaces to the underlying physical properties of the
surfaces.
� In Experiment 1 we will use multidimensional scaling

techniques to reveal both the dimensionality of gloss
perception, and to suggest perceptually meaningful axes
in visual “gloss space”

� In Experiment 2 we will use magnitude estimation
techniques to place quantitative metrics on these axes
and create a perceptually uniform gloss space.

� Finally we will use these results to develop a
psychophysically-based light reflection model for image
synthesis.

Gloss is a visual attribute of a wide variety of materials
including plastics, ceramics, metals, and other man-made and
organic substances. Eventually we would like to develop a model
that can explain the appearances of all these kinds of materials,
but initially we need to restrict our studies to a manageable
subclass. To start, we’ve chosen to study a set of achromatic
glossy paints. We chose paints because they exhibit a wide variety
of gloss levels from flat to high gloss; their reflectance properties
have been measured extensively so there are good models to
describe their physical characteristics, and they are widely used in
art and industry, so hopefully our findings will be immediately
useful.

3.2 Experiment 1: Finding the perceptual
dimensions of gloss space

3.2.1 Purpose
The purpose of Experiment 1 is to determine the dimensionality



of gloss perception for painted surfaces in synthetic images and to
find perceptually meaningful axes in this visual gloss space. To do
this we’ve designed an experiment based on multidimensional
scaling techniques.

3.2.2 Methodology: Multidimensional scaling
Multidimensional scaling (MDS) is statistical method for

finding the latent dimensions in a dataset [Borg97].
Multidimensional scaling takes a set of measures of the distances
between pairs of objects in a dataset and reconstructs a space that
explains the dataset’s overall structure. This concept is best
illustrated by example.

Table 1 shows a matrix of the distances between a number of
U.S. cities. This matrix indicates how far one city is from another
but gives no sense of their spatial relations. If this proximity
matrix is used as input to the PROXSCAL MDS algorithm
[Busi97], it attempts to reconstruct the spatial positions of the
cities to best explain the proximity measures.

The two-dimensional MDS solution produced by the algorithm
is shown in Figure 2, where you can see that MDS has recovered
the true spatial layout of the cities (the outline of the U.S. map is
overlaid for reference). Since distances in a space are unaffected
by rotations or inversions, MDS solutions are only specific up to
these transformations, and it is the experimenter’s job to find
meaningful axes in the solution.

Although a two-dimensional MDS solution is shown in Figure
2, MDS can produce solutions in any number of dimensions to try
to achieve the best fit to the data. The goodness of the fit is known
as the stress of the solution. The stress formula used in the
example is:
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where δi,j are the input proximities, xi and xj are the recovered
locations in the nth dimensional solution, and d is a measure of the
distance between them. The MDS algorithm attempts to minimize
the stress for each of the solutions.

Figure 3 plots the stress values for solutions running from 1 to 5
dimensions. The stress curve will drop sharply as dimensions are
added that explain more of the data and will decline more slowly
as further superfluous dimensions are added. Standard practice is
to choose the dimensionality indicated by this inflection point in
the stress curve. The stress curve in Figure 3 indicates that a two-
dimensional solution provides the best fit to the data, but this is to
be expected since the dataset is inherently two dimensional, and
error in the proximity measures is negligible, providing a perfect
two-dimensional fit. In typical experimental datasets, noise in the
data results in a stress curve that drops then asymptotes as greater-
than-necessary dimensions are added.

MDS algorithms come in a variety of flavors that depend on the
form of the stress function the algorithm uses.  In our work we use
a variant called weighted Euclidean non-metric MDS  [Borg97]
that allows us to combine data from multiple subjects, compensate
for individual differences, and analyze datasets where the

proximities may only reflect ordinal rather than interval relations
in the data. We also use a second variant called confirmatory
MDS [Borg97] which let us test hypotheses about the functional
forms of the dimensions and their orthogonality.

3.2.3 Experimental Procedure
3.2.3.1 Stimuli
To apply MDS to the problem of finding the dimensionality of

gloss perception, we first need to construct a stimulus set with
objects that vary in gloss, and then collect measures of the
apparent differences in gloss between pairs of objects in the set.
These apparent gloss differences then serve as the proximities that
the MDS algorithm uses to construct a representation of visual
“gloss space”.

A composite image of the stimulus set used in Experiment 1 is
shown in Figure 4. The environment consisted of a sphere
enclosed in a checkerboard box illuminated by an overhead area
light source. Images were generated using a physically-based
Monte Carlo path-tracer that used an isotropic version of Ward’s
[Ward92] light reflection model:
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where ρ(θi,φi,θo,φo) is the surface BRDF, θi,φi, and θo,φo are
spherical coordinates for the incoming and outgoing directions,
and δ is the half-angle between them. Ward’s model uses three
parameters to describe the BRDF: ρd – the object’s diffuse
reflectance; ρs – the energy of its specular component, and α – the
spread of the specular lobe. Our reason for choosing Ward’s
model is that we wanted the objects in the stimulus set to be
representative of the gloss properties of real materials, and Ward
gives parameters that represent measured properties of a range of
glossy paints. The parameters used in our stimulus set span this
range. Each parameter was set to three levels. ρs values were
(0.033, 0.066, 0.099), α values were (0.04, 0.07, 0.10), and ρd
was set to (0.03, 0.193, 0.767) which are the diffuse reflectance
factors corresponding to Munsell values (N2, N5, and N9). The
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Figure 2: MDS reconstruction of the U.S. map.

Atl Chi Den Hou LA Mia NYC SF Sea DC
Atlanta 0
Chicago 587 0
Denver 1212 920 0
Houston 701 940 879 0
LA 1936 1745 831 1374 0
Miami 604 1188 1726 968 2339 0
NYC 748 713 1631 1420 2451 1092 0
SF 2139 1858 949 1645 347 2594 2571 0
Seattle 2182 1737 1021 1891 959 2734 2406 678 0
DC 543 597 1494 1220 2300 923 205 2442 2329 0

Table 1: Proximity matrix of distances between U.S. cities.
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Figure 3: Stress vs. dimensionality graph for MDS solution.



black and white checks in the checkerboard surround were
completely diffuse and had ρd’s of 0.03 and 0.767 respectively.
By using all combinations of the ρd, ρs, and α parameters for the
sphere objects, we produced the 27 images shown in Figure 4.

Choosing a tone reproduction operator to map from calculated
image radiances to display values presented a challenge because
the images had high dynamic ranges caused by the visible
reflection of the light source. We experimented with a number of
tone reproduction operators including simple clipping and gamma
compression as well as Pattanaik [Patt98] and Ward-Larson’s
[Ward97] high dynamic range operators but we abandoned these
methods because they produced objectionable artifacts such as
halos and banding. We settled on Tumblin’s [Tumb99] Rational
Sigmoid function which compresses the light source highlight
without abrupt clipping and allows all other scene values to be
directly mapped to the display.

One of the consequences of the limited dynamic range of
display devices is that any gloss attribute related to the absolute
intensity of a highlight is not likely to play much of a role in how
glossy surfaces appear in images. Given the amount of effort that
has gone into developing physically accurate light reflection
models for realistic image synthesis, addressing the particular
dynamic range problems caused by trying to display images of
glossy surfaces is certainly a subject that merits future work.

3.2.3.2 Procedure
Nine subjects participated in Experiment 1. The subjects were

the first two authors and seven graduate and undergraduate
Computer Science students. All had normal or corrected to normal
vision. With the exception of the authors, all were naïve to the
purpose and methods of the experiment.

In the experimental session, the subjects viewed pairs of images
displayed on a calibrated SXGA monitor. Minimum and
maximum monitor luminances were 0.7 and 108 cd/m2 and the
system gamma was 2.35. The images were presented on a black
background in a darkened room. The monitor was viewed from a
distance of 60 inches to ensure that the display raster was
invisible. At this viewing distance each image subtended 3.2
degrees of visual angle.

Subjects were asked to judge the apparent difference in gloss
between the pair of objects shown in the images. They entered
their responses using a mouse to vary the position of a slider that

was displayed below the images. The ends of the slider scale were
labeled “0, small difference” and “100, large difference”. A
readout below the slider indicated the numeric position along the
scale.

Subjects judged the apparent gloss differences of all 378 object
pairs in the stimulus set. The pairs were presented in random
order. For each subject, the apparent gloss differences measured
in the experiment were used to fill out a 27 x 27 proximity matrix.
All nine proximity matrices were used as input to the
PROXSCAL MDS algorithm using the weighted Euclidean non-
metric stress formulation.

3.2.4 Analysis/Discussion
Recall that our goal in this experiment is to discover the

dimensionality of gloss perception for the painted surfaces and to
find perceptually meaningful axes in this gloss space. To do this
we observed how the stress varied with the dimensionality of the
MDS solution. Figure 5 plots stress values for solutions running
from 1 to 5 dimensions. The stress value drops significantly with
the change from a 1-dimensional to a 2-dimensional solution, but
declines more slowly with the addition of higher dimensions
which are probably only accommodating noise in the dataset.
From this pattern of results we infer that under these conditions
apparent gloss has two dimensions.

The two-dimensional gloss space recovered by MDS is shown
in Figure 6. In the Figure, MDS has placed the objects at locations
that best reflect the differences in apparent gloss reported by the
subjects.

As stated earlier, since distances in this space are invariant
under rotation, inversion or scaling, it is our job to look for
perceptually meaningful axes in the space. The cross in the lower
right corner of the diagram indicates two important trends in the
data that are related to properties of the reflected images formed
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Figure 5: Dimensionality vs. stress graph for Experiment 1.

Figure 4†: Composite image of the stimulus set used in Experiment 1. Labels indicate the diffuse color (white, gray, black), and ρρρρs
and αααα values. Symbols are included as an aid for interpreting subsequent figures.

†Gloss appearance parameters are specified for the display
conditions described in the experiments. Appearance in the
printed images is subject to the limitations of the printing process.



by the surfaces. First, the apparent contrast of the reflected image
increases from the lower left to the upper right of the diagram.
Second, the apparent sharpness or distinctness of the reflected
image increases from lower right to upper left. We believe these
dimensions are qualitatively similar to the contrast gloss and
distinctness-of-image (DOI) gloss attributes Hunter observed and
so we will name our dimensions c for contrast gloss and d for DOI
gloss. However, to foreshadow the results of the next experiment,
we will differ significantly from Hunter (and Judd) in the
quantitative formulation of relationship between these perceptual
dimensions and the physical dimensions used to describe surface
BRDFs.

3.3 Experiment 2: Creating a perceptually
uniform gloss space

3.3.1 Purpose
In Experiment 1 we discovered the dimensionality of gloss

perception and identified perceptually meaningful axes in visual
gloss space for painted surfaces in synthetic images. The purpose
of Experiment 2 is to place psychophysical metrics on these axes

and rescale them to create a perceptually uniform gloss space. To
do this we’ve designed an experiment based on magnitude
estimation techniques.

3.3.2 Methodology: Magnitude estimation
Magnitude estimation is one of a family of psychophysical

scaling techniques designed to reveal functional relationships
between the physical properties of a stimulus and its perceptual
attributes [Torg60]. In the basic magnitude estimation procedure,
subjects are presented with a random sequence of stimuli that vary
along some physical dimension, and they are asked to assign a
number to each stimulus that indicates the apparent magnitude of
the corresponding perceptual attribute. Magnitude estimates are
then used to derive a psychophysical scale.

3.3.3 Experimental Procedure
3.3.3.1 Stimuli
Two magnitude estimation studies were performed in

Experiment 2 to scale the perceptual gloss dimensions found in
Experiment 1. In both cases the stimuli used were subsets of the
stimuli used in Experiment 1, supplemented by new stimuli with

Figure 6†: Two-dimensional MDS solution for Experiment 1.



parameters intermediate to those in the original set. In the contrast
gloss scaling study 24 images were used, showing objects with
combinations of ρd levels of (0.03, 0.087, 0.193, 0.420, 0.767)
(black, dark/medium/light gray, white) and ρs levels of (0.017
0.033, 0.050, 0.066, 0.083 0.099) (low to high specular energy),
the α parameter was fixed at 0.04 (small spread) to make
variations along the contrast gloss dimension as salient as
possible. In the DOI gloss scaling study, α was varied in 11 levels
from 0.01 to 0.19 (small to large spread), and the ρd and ρs
parameters were fixed at 0.03 (black) and 0.099 (high specular
energy) to make variations along the DOI gloss dimension as
salient as possible.

3.3.3.2 Procedure
The subjects in Experiment 2 were the same as those in

Experiment 1, and the same display techniques, viewing
conditions, and data gathering methods were used.

In each magnitude estimation study, subjects viewed single
images from the new stimulus sets. Images were presented in a
random sequence and each sequence was repeated three times. On
each trial subjects were asked to judge the apparent glossiness of
the object in the image on a scale from 0 to 100 by adjusting the
on-screen slider.

3.3.4 Analysis/Discussion
Our goal in these experiments is to derive psychophysical

scaling functions that relate changes in apparent gloss along the
perceptual dimensions we discovered in Experiment 1 to
variations in the parameters of the physical light reflection model.
To achieve this goal we tested various hypotheses about
functional relationships between the physical and perceptual
dimensions, first with least squares fitting techniques on the
magnitude estimation data and then with confirmatory MDS on
the full dataset from Experiment 1. This approach allowed us to
verify that the scaling functions are task independent and to
determine whether the perceptual dimensions are orthogonal.

First we examined the d (DOI gloss) dimension. Our hypothesis
was that d is inversely related to the α parameter. In Figure 7
subjects’ gloss ratings are plotted versus the function d = 1 - α.
The line was obtained through linear regression and the r2 value
of the fit was 0.96. Polynomial fits only increased r2 by less than
0.01 so we concluded that the relationship is linear.

Interpreting the c (contrast gloss) dimension was less
straightforward. In the MDS solution from Experiment 1 (Figure
6) it is clear that c varies with diffuse reflectance, since the white,
gray, and black objects form distinct clusters that occupy different
ranges along the c dimension. Our first hypothesis was that c is a
simple function of the physical contrast (luminance ratio) of the
black and white patches in the reflected image but this provided a
very poor fit to the data (r2 = 0.76). Our second hypothesis was
that “contrast” in this situation is a function of the difference in

apparent lightness of the two patches, where lightness is defined
as in CIELAB [Fair98]. This second formulation provided a much
better fit to the magnitude estimation data (r2 = 0.87). However
when we tested this second hypothesis on the full dataset from
Experiment 1 using confirmatory MDS, we found that the fit was
poor for surfaces with large α values where the physical contrast
in the image plane drops as the reflected image gets blurrier. We
then tested a third hypothesis that subjects’ lightness judgments
are based on inferred object-space reflectance values rather than
image-space intensity values (i.e. subjects show lightness
constancy [Fair98], compensating for blur-related image contrast
losses). This hypothesis is formalized in Equation 4 which we
derived using standard integration techniques under the
assumption of small α values and high environmental contrast.

Figure 8 plots the data from the contrast gloss scaling study,
which shows how subjects’ gloss ratings relate to this final
formulation for the c dimension. The line was obtained through
linear regression and is a good fit to the data with an r2 value of
0.94. This result shows that subjects appear to be compensating
for the decrease in physical image contrast caused by blurring in
making their judgments of the lightnesses of the reflected patches.
Using this formulation also decreased the stress value in a
subsequent confirmatory MDS test on the full dataset, which
indicates that the c and d axes are independent, and therefore
orthogonal in gloss space.

Equations 3 and 4 show the final formulas for the c and d axes.
These formulas define psychophysical metrics that relate changes
in apparent gloss along these two axes to variations in the physical
parameters of the light reflection model.

α−=1d (3)
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These axes are perceptually linear, but to make the space
perceptually uniform, we need to find weighting factors for the
axes so that distances in the space can be measured. These
weights are given as a byproduct of the confirmatory MDS tests
we ran which lets us write the distance as:

 22 )](78.1[][ jijiij ddccD −⋅+−∝ (5)

Figure 9 shows a visualization of the perceptually uniform gloss
space with the stimuli from Experiment 1 placed at their predicted
locations. The Figure shows the contrast gloss (c) and DOI gloss
(d) dimensions form a two-dimensional space, (which is also
shown in the inset), and surface lightness (L) (which we will
incorporate in the following section) is an orthogonal third
dimension.

Like perceptually uniform color spaces, this perceptually
uniform gloss space has a number of important properties. For
example, it allows us to:
� predict the visual appearance of a glossy paint from its

physical reflectance parameters
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Figure 7: Magnitude estimates and fit for DOI gloss d.
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Figure 8: Magnitude estimates and fit for contrast gloss c.



� compare two paints with respect to the two visual gloss
dimensions

� produce paints with different physical reflectance values  that
match in terms of apparent gloss

� calculate isogloss contours that describe paints that differ
equally in apparent gloss from a standard.

4. A PSYCHOPHYSICALLY-BASED
LIGHT REFLECTION MODEL

To take full advantage of this new space, we are going to rewrite
the parameters of the physically-based light reflection model
(Equations 6,7,8) in perceptual terms to create a
psychophysically-based light reflection model that can be used to
describe both the physical and visual characteristics of the paints
we studied. To do this, we need to introduce a perceptually linear
parameter related to diffuse reflectance. For compatibility with
perceptually uniform color spaces we chose CIELAB lightness
(L). This final addition allows us to express the physical
parameters in terms of the perceptual ones through the following
equations:
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where f is the CIELAB lightness function normalized in [0,1].
Figure 10 illustrates the influence of the lightness of the diffuse

component on perceived gloss. Here the solid curve plots the
maximum contrast gloss c achievable for different lightness values
(derived by enforcing energy conservation of the BRDF). This
defines the envelope of gloss space with respect to lightness. We
also plotted how contrast gloss varies with lightness for a fixed
energy of the specular lobe. This curve shows that for the same
specular energy, contrast gloss is smaller for lighter objects. That
is to say, if two surfaces are painted with black and white paints
having the same physical formulations, the black surface will
appear glossier than the white one.

Strictly speaking, the model we’ve developed is only predictive

Figure 9†: The perceptually uniform gloss space derived from Experiment 2.
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within the range of our stimuli, which covers a substantial range
of measured glossy paints.  However we feel confident that the
model can be applied outside this range to cover the space of
physically plausible BRDFs expressible using the Ward model,
but we believe that the physical parameters should be maintained
in the range of the ones measured for real materials. In particular,
the α value should not be much larger than 0.2 since the specular
lobe of the BRDF is not normalized for larger values [Ward92].

5. APPLYING THE MODEL
In the previous section we used the results of our gloss

perception studies to develop a psychophysically-based light
reflection model for image synthesis where the dimensions of the
model are perceptually meaningful and variations along these
dimensions are perceptually uniform. In this section we
demonstrate the power of the model by showing how it can be
used to facilitate the process of describing surface appearance in
graphics rendering applications.

5.1 Describing differences in apparent gloss
One of the benefits of working in a perceptually uniform

description space is that steps along the dimensions produce equal
changes in appearance. This is true of uniform color spaces such
as CIELAB where equal numerical steps in lightness (L) or
chroma (a,b) produce perceptually equal changes in color
appearance.

The perceptually uniform gloss space our light reflection model
is based on has similar properties. Figure 11 shows isogloss
difference contours with respect to the object in the lower left
corner of the diagram (c = 0.087, d = 0.93). According to the
model, the objects falling on the circular contours are equally
different in apparent gloss from the reference object. The
concentric circles show two degrees of isogloss difference (∆c =
0.04, ∆d = 0.22 = 0.04/1.78).

It’s important to observe that because the gloss space is two-
dimensional (c,d), objects equidistant from a reference object may
have different reflectance properties even though they will be
judged to be equally different in gloss from the reference. For
example, the two objects at 12 and 3 o’clock in Figure 11 have

very different reflectance properties: the one at 12 o’clock
produces a sharp but low contrast reflection, while the one at 3
o’clock makes a blurry but high contrast reflection, still the model
predicts that they will be judged to be equally different in gloss
from the reference object. This prediction was supported by an
informal ranking study we ran using the stimulus set from
Experiment 1. Objects whose parameters fell along isogloss
contours with respect to a low gloss reference object received
similar rank values implying that they appeared equally “glossy”
but in different ways.

This demonstration shows that our model provides the ability to
specify differences in apparent gloss. This should make it much
easier to modify object gloss properties in controlled ways in
graphics rendering applications.

5.2 Matching apparent gloss
Many studies of gloss perception [Hunt87, Bill87] have noted

that apparent gloss is affected by the  diffuse reflectance of a
surface, with light colored surfaces appearing less glossy than
dark ones having the same finish. This effect is illustrated in the
top row of Figure 12 where the white, gray and black objects have
the same physical gloss parameters (ρs = 0.099, α = 0.04) but
differ in apparent gloss with the white sphere appearing least
glossy and the black sphere appearing most glossy. This
phenomenon makes it difficult to create objects with different
lightnesses that match in apparent gloss.  The bottom row of
Figure 12 shows the results produced with our psychophysically-
based gloss model. When the objects are assigned the same
perceptual gloss values (c = 0.057, d = 0.96) they appear to have
similar gloss despite differences in their lightnesses. This property
of the model should make it much easier to create objects that
have the same apparent gloss, since the parameters that describe
object lightness (L) and gloss (c,d) have been decoupled.

5.3 A new tool for modeling surface
appearance in computer graphics

In the previous subsections we have demonstrated that our new
model has two important features: it allows us to describe
differences in apparent gloss, and it lets us make objects match in
apparent gloss. These features should make it much easier to
specify surface appearance in graphics rendering applications. To
demonstrate how the model might be used, Figure 13 shows a
prototype of a perceptually-based color/gloss picker for painted
surfaces that could be incorporated into an application. We add
color to the model by assuming (as suggested in [Astm89] and
[Aida97]), that surface chromaticity and apparent gloss are

Figure 11†: Isogloss difference contours.

Figure 12†: Matching apparent gloss: white, gray, and black
objects having the same physical gloss parameters (top row)
and perceptual gloss parameters (bottom row).



relatively independent. For consistency with the lightness
parameter (L) we use CIELAB chroma (a,b) to specify color. In
the interface, surface appearance is specified by these three color
parameters and by the two gloss parameters (c,d).

Figure 14 shows an image where this five parameter color/gloss
description has been used to match the apparent gloss of the dark
red and light blue mugs. Notice that the glossy appearance of the
mugs is similar even though they differ significantly in lightness
and color. This image suggests that psychophysically-based light
reflection model we have developed through our experiments may
be usefully applied under more general conditions, however
further testing and validation are clearly necessary.

6. CONCLUSIONS/FUTURE WORK
In this paper we’ve introduced a new light reflection model for

image synthesis based on experimental studies of surface gloss
perception. To develop the model we conducted two experiments
that explored the relationships between the physical parameters
used to describe the reflectance properties of glossy surfaces and
the perceptual dimensions of glossy appearance in synthetic
images. We used the results of these experiments to develop a
psychophysically-based light reflection model where the
dimensions of the model are perceptually-meaningful and
variations along the dimensions are perceptually uniform. We’ve
demonstrated that the model can facilitate the process of
describing surface appearance in graphics rendering applications.
Although we feel that these results are promising, there is clearly
much more work to be done.

First, we want to make clear that strictly speaking, the model
we’ve developed only accurately predicts appearance within the
range of glossy paints we studied, under the viewing conditions
we used. Although we believe our results will generalize well, if
the goal is to develop a comprehensive psychophysically-based
light reflection model for image synthesis, many more studies
need to be done: 1) to investigate different classes of materials
like plastics, metals, and papers (possibly requiring different
BRDF models); and 2) to determine how object properties like
shape, pattern, texture, and color, and scene properties like
illumination quality, spatial proximity, and environmental contrast
and texture affect apparent gloss. Additionally, even though in our
experiments we found that apparent gloss has two dimensions, we
fully expect that for other materials and under other conditions
different gloss attributes such as sheen and haze may play a
greater role. Finally, we feel that a very important topic for future
work is to develop better tone reproduction methods for

accurately reproducing the appearance of high dynamic range
glossy surfaces within the limited ranges of existing display
devices.

By using physically-based image synthesis techniques to
conduct psychophysical studies of surface appearance, we should
be able to make significant progress in these areas.  This will
allow us to develop models of the goniometric aspects of surface
appearance to complement widely used colorimetric models.
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