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Abstract 
The goal of this project was to determine if advanced rendering 

methods such as global illumination allow more accurate 
discrimination of shape differences than standard rendering 
methods such as OpenGL.  

To address these questions, we conducted two psychophysical 
experiments to measure observers’ sensitivity to shape differences 
between a physical model and rendered images of the model. Two 
results stand out: 

• The rendering method used has a significant effect on the 
ability to discriminate shape. In particular, under the 
conditions tested, global illumination rendering improves 
sensitivity to shape differences. 

• Further, viewpoint appears to have an effect on the ability to 
discriminate shape. In most of the cases studied, sensitivity to 
small shape variations was poorer when the rendering and 
model viewpoints were different. 

The results of this work have important implications for our 
understanding of human shape perception and for the 
development of rendering tools for computer-aided design. 
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1 Introduction 
The goal of design visualization is prediction: to show the 

design exactly as it will appear when built. Existing CAD 
visualization tools have proven their value, but have also shown 
some important limitations. Sometimes the visualizations produce 
“surprises”, where the final physical object looks different than it 
did in the computer rendering. 

Many commercially available modeling and rendering tools 
have been developed for the entertainment industry, where artistic 
skill is applied to convince viewers that the image on the screen is 
real. These tools typically simplify the image rendering process 
by using ad hoc models of local light reflection and ignoring 
global illumination effects within the environment. 

For many years, advanced rendering methods that more 
accurately simulate light reflection and transport have been 
available, but these methods are only useful to the design 
community if they improve the fidelity of the visualizations with 
respect to the final physical artifacts. For the design of 
automobiles and other complex objects, shape perception is an 
important issue, and a critical question is whether advanced 

rendering methods allow more accurate perception of object shape 
than standard methods. 

To address this question we conducted a pair of psychophysical 
experiments in which observers compared rendered images of an 
object to its real physical counterpart, and we tested whether they 
were able to make finer discriminations of shape with advanced 
renderings than with standard renderings. Our primary goal was to 
determine if advanced rendering methods allow designers to make 
more accurate visual evaluations of their designs.  

The paper is organized into the following sections. Section 2 
surveys related work in this area. Section 3 describes the overall 
design of the experiments and the methods used for generating the 
visual stimuli. Sections 4 and 5 describe the experiments 
themselves, and the results are analyzed in section 6. Section 7 
summarizes the conclusions that can be drawn from the 
experiments and Section 8 points toward future work. 

2 Related Work 
Perceiving the shapes of objects is one of the central functions 

of vision (see [Palmer99] for an introductory review and 
[Interrante98] for a more comprehensive survey). The visual 
system uses many sources of information to accomplish this task 
including occlusion, perspective, shading, shadows, texture, 
motion, and disparity. Of these, surface shading by itself is 
thought to be a relatively weak source of metric information about 
surface shape [Todd83, Erens93]. However it has also been 
suggested that the non-metric cues provided by shading, in 
combination with other cues can provide powerful information for 
shape perception and discrimination [Todd89].  

The pattern of shading observed on a curved surface depends 
not only on its shape, but also upon its material properties, the 
surrounding environment, and the observer’s viewpoint. The 
specularities produced by shiny materials appear to provide useful 
information for shape perception [Norman95, Blake91], though 
under some restricted conditions shape and material properties 
may be confounded [Ramachandran88]. The visual system also 
appears to be able to take advantage of the shading patterns 
provided by both diffuse and glossy interreflections in solving the 
shape perception problem [Christou96, Norman04]. 

The pictorial representation of shape from shading is an 
important topic that has been studied for centuries [Kubovy86, 
Miller98], and much of the modern research in the area of shape 
perception has employed shaded computer graphics images. 
Therefore, it is surprising that relatively little attention has been 
paid to the issue of how the shading methods in rendering affect 
shape perception ([Rodger00] is an exception), and only recently 
have researchers started to use global illumination algorithms 
rather than standard local shading methods in their studies 
[Pellacini00, Madison01, Fleming03]. While this is a promising 
trend, to our knowledge no direct comparisons of global and local 
algorithms with respect to shape perception have been conducted. 

Comparison of the appearance of real and rendered objects is 
also a topic that has a long history [Hagen80, Ellis91], and 
recently computer graphics researchers have started conducting 
studies to validate the fidelity of renderings with respect to the 
real world [Meyer86, Rushmeier95, McNamara00], however the 
focus on these studies has been reflectance and illumination 

 



 

perception per se, rather than how these shading factors affect 
shape appearance. Therefore we believe our current studies make 
a unique contribution to this literature. 

3 Design of the Experiments 
Our experiments required two kinds of visual stimuli: a physical 

test object and rendered images of it. There were two driving 
requirements for these stimuli: the images had to be faithful 
representations of the physical model, and the shape of the 
rendered model had to be systematically variable. In the following 
sections we will first describe how we selected the physical test 
object, then we discuss the processes used to generate the 
rendered images. 
3.1 Test object 

Since the driving application for this work is automobile design, 
the most obvious choice would have been to use a real car as a 
test object. Unfortunately this was impossible, not only because of 
lab space limitations, but also because we did not have access to 
the geometric data. 

Another possibility would have been to use a simple generic 
shape such as a perturbed sphere or superquadric. However, such 
a shape is geometrically abstract, and we were concerned that the 
results might not generalize well to real objects. In addition, there 
would have been the problem of fabricating a physical model to 
match the geometric model. 

We chose a compromise: a generic car-like shape called a frog. 
The frog is a glass-fiber shell about 2 feet long used in the auto 
industry as a reference shape for evaluating different paint 
finishes. While it is much simpler in shape than a real automobile 
and manageable in size, it embodies some of the complexity that 
is found on a real car, including convex, concave, and saddle 
curvatures. We based the mathematical model for rendering on a 
3D scan of a physical frog, constructing surfaces in Alias® 
AutoStudio™ to match. 
3.2 Shape Variations 

Just as important as deciding on a base shape was defining the 
shape variations that would be used in the experiment. It was 
important to hold the object silhouette constant so that differences 
in shading would be the only cue subjects could use to distinguish 
the variations. We chose an area on the side of the body that 
displayed subtle, but visible, curvature. We created six variations 
of the base model, moving the surface further outward in each. 

Figure 1 indicates the area where variation was concentrated, and 
shows cross-sections through the seven different surfaces. Figure 
2 shows renderings of the base model (shape 0), the midpoint of 
the variation range (shape 3), and the maximum variation (shape 
6). 
3.3 View Variations 

Since objects are often observed from different viewpoints, we 
also wanted to determine if viewpoint differences affect shape 
discrimination. To do this we rendered each shape variation from 
three different viewpoints by rotating the model. Figure 3 shows 
renderings from the three viewpoints used: left, center, and right. 
The center view is nominally a projective match to the view of the 
physical model used in the experiments. 
3.4 Viewing Environment 

In order to make a direct comparison between the physical 
model and the renderings, we needed to match not only the test 
object itself, but also its surrounding environment, because this 
determines surface illumination and reflections. The environment 
had to be realizable both physically and as a mathematical model. 
Since cars are typically viewed outdoors, we constructed a simple 
outdoor scene. Figure 4 shows the physical setup. 

We built a closed box (approximately 5’ on each side) with a 
painted blue interior to simulate a clear sky. We used high-
resolution texture images of tiles and bricks printed on a large-
format inkjet printer to give natural reflections from the floors and 
walls. The environment was intentionally rather simple, since 
every detail had to be modeled in both the physical world for the 
renderings, but it did contain enough detail to be plausible as a 
real environment. 

The most severe restriction on the environment came from our 
need to match luminances between the physical environment and 
the computer display. A sunlit outdoor scene can have a dynamic 

 
Figure 2: Range of shape variation used in the experiments. 

 
Figure 3: Viewpoints used in the experiments. 
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range exceeding 10,000:1, but conventional displays can only 
reproduce about a 100:1 range. To resolve this mismatch, we used 
completely indirect lighting that limited the range of luminances 
to the range that could be reproduced by our display (a Sony 
GDM-W900 CRT). As a bonus, this also simulated the “desert 
before sunrise” look favored by automotive photographers, 
illustrators, and designers. 

To match colors between the physical environment and the 
rendered images, we used two standard fluorescent strip lights 
with high color rendering index and a 5000K correlated color 
temperature, and switched our monitor to a 5000K white point. 
The fluorescents were dimmable so that we could visually match 
brightness of the physical environment to that of the monitor. 

We wanted the subjects to view the physical model and the 
renderings at the same size and from a similar angle, so we placed 
the environment and the monitor on a tabletop and had the 
subjects view the physical model and the computer display 
through two identical apertures. Figure 5 shows both the principle 
involved and the view seen by the subjects. The apparent tilt of 
the images is a projective distortion caused by the wide angle of 
the photograph. Both apertures were physically upright.  
3.5 Rendering methods 

To make the global illumination renderings, we used our in-
house research software based on the Metropolis method 
[Veach97]. Reflectance was simulated with the Ward light 
reflection model [Ward92], fitting it to reflectance measurements 
of a sample of the same paint used on the physical model of the 
frog. Each image was rendered at 1600x900 pixels and 24 bits. 

We made corresponding OpenGL renderings for comparison, 
using lighting and shading parameters that matched the 
environment and surface finish as well as possible. Shadows were 
computed using a depth-map shadow method, and an environment 
map was used for reflections. 
3.6 Resulting Images 

Figures 6a and 6b show the two types of computer rendering 
used in this experiment. Figure 6a is an OpenGL rendering, 
representing the quality of rendering available in many design 
packages. Figure 6b shows the same geometry rendered using 
global illumination and an accurate reflectance model. Figure 6c 
shows a photograph of the physical model. 

4 Experiments 
The question we seek to answer through our experiments is 

whether advanced computer graphics rendering techniques such 
as global illumination allow for more accurate discrimination of 
shape differences than standard rendering methods such as those 
available through OpenGL. We are also interested in how an 
additional factor, viewpoint, affects our ability to discriminate 
shape. The experiments and statistical analyses presented in the 
following sections were designed to address these questions. 

4.1 Stimuli 

The stimuli for the experiments consisted of six sets of 
computer-generated images of the object shown in Figure 1. The 
sets were defined by all combinations of rendering method (Open 
GL, global illumination) and viewpoint (left, match, right). Each 
rendering/view set consisted of a sequence of seven images 
showing a progressive change in the shape of the physical frog 
model. Figure 2 shows the range of shape variation in each 
sequence, where shape 0 was a geometric match to the physical 
model, while shape 6 represented the greatest geometric 
difference. Figure 3 shows the three views (left, match, right) 
used. The match view was a projective match to the subject’s 
view of the physical model in the experimental setup. 

5 Ranking Study 
Prior to the main experiment, we conducted a ranking study. 

Our goals were twofold. First we wanted to familiarize the 
subjects with the character and range of the images we were 
using. Second, we wanted to confirm that we had chosen an 
appropriate range of shape variations for study.  

5.1 Procedure 
Subjects sat in front of the table shown in Figure 7. On each 

trial they were presented with one of the six rendering/view image 
sets. At the top of the table was a “standard” image of the model 
(shape 0, global illumination rendering, match view).  

  
Figure 4: Experimental setup (L). With apertures removed (R). 

   
Figure 6: Renderings used in the experiments (a,b) with a photograph of the physical model (c) for reference. 

 

 
Figure 5: Viewing geometry: physical model, monitor image. 
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Figure 7: Ranking study procedure (top) before, (bottom) after. 

Initially the images were presented in a random pile as shown in 
the top part of Figure 7. The subject’s task was to place the 
images in order of similarity with respect to the standard (shown 
in the bottom of Figure 7). The same procedure was used for each 
image set, and the presentation order of the sets was randomized 
from subject to subject. 

Ten subjects participated in the study. The subjects were staff 
and graduate students in the Cornell Program of Computer 
Graphics, were all naïve to the purpose and design of the 
experiment. However they all had significant experience viewing 
images and discriminating image differences, so their 
performance is probably most representative of a professional 
population. 

5.2 Results and Analysis 
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Figure 8: Ranking study results.  

Figure 8 summarizes the results of the ranking study. Each set 
of colored bars corresponds to one of the six rendering/view 
combinations presented. The horizontal axis in each graph 
indicates the shape variation tested (with 0 being the standard), 
and the vertical axis indicates the number of times each of these 
shapes was misranked (for example, a bar for shape 0 shows the 
number of times it was placed in the 1st, 2nd, etc. position in the 
subjects’ rankings). There are several things to notice: 

• First, the rankings are not perfect. Subjects made errors in 
ordering the shapes with respect to their true geometric 
variations.  

• Second, most of the errors occurred for the smaller variations 
in shape (shapes 0-4). Larger shape differences were typically 
ranked in the correct order.  

• Finally, there were differences in the patterns of misrankings 
among the different rendering/view combinations indicating 
that these factors made the task more or less difficult.  

There are several insights that can be drawn from this study.  

• First, the study confirms that the range of shape variation we 
are using is sufficient and that the shape differences are 
indeed visible. 

• Second, the fact that there are generally more misrankings for 
the smaller shape variations indicates that these differences 
are near the threshold for shape discrimination, which is likely 
the region of interest in the design process. 

• Finally, the variance in ranking performance across different 
rendering/view combinations show that these parameters do in 
fact affect the visual information available for judging shape, 
and therefore these are appropriate variables to be studying. 

While the results of this study are only preliminary, they give us 
confidence that the stimuli and methods we are using are 
appropriate for more quantitative study.  

6 Rating Experiment 
As stated earlier, our goal was to determine whether advanced 

rendering methods such as global illumination allow for more 
accurate discrimination of shape differences than standard 
rendering methods such as OpenGL. We are also interested in 
how an additional factor: viewpoint, affects our ability to 
discriminate shape. To accomplish this we ran a second 
experiment in which we compared renderings and a real physical 
model. The setup used in this experiment was previously 
described in Section 3.  

6.1 Procedure 
The experiment used a graphical rating procedure. Subjects saw 

a series of images, and for each image they were asked to rate 
how different the shape shown in the image was with respect to 
the shape of the physical model. For each image, subjects 
indicated their responses using a mouse to adjust an onscreen 
slider. The movement of the slider was continuous and the ends of 
the range were labeled “identical” and “most different”. Slider 
position was coded into a numerical rating on a 0 to 100 scale. 
The images were the same ones used in the ranking study and 
consisted of a total of 42 images representing all combinations of 
the 7 shape variations, 2 rendering methods, and 3 views. The 
images were presented two times each in random order. Trials 
were under subject control through the use of an onscreen “next” 
button. The same 10 subjects that participated in the ranking study 
participated in this experiment. 

6.2 Results: mean ratings 
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b) glob illum
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Figure 9: Mean rating curves. 
Figure 9 summarizes the results of the rating experiment. The 

curves in the two graphs show the mean ratings given to each of 
the seven shape variations as a function of rendering method and 
view. Figure 9a shows results for the OpenGL renderings and 
Figure 9b shows results for the global illumination renderings.  

Although the trends shown are based on descriptive statistics 
(means), and need to be confirmed with inferential methods, 
several interesting observations can be made. 



 

• First, overall, all the curves have positive slopes. This 
suggests that subjects are in fact able to do the task with some 
ability, and means that larger physical differences receive 
systematically higher ratings. 

• Second, there are absolute differences in the ranges of ratings 
given to different views, with the range for the left view being 
highest, the match view lowest, and the right view somewhere 
in between. This suggests that there may be overall 
differences in how similar the shapes rendered in the different 
views appeared with respect to the physical model 

• Finally, it appears that there are differences in the slopes of 
the curves across both view and rendering method. If there are 
slope differences this is interesting, because the slopes of the 
curves are an indicator of sensitivity to shape variations. A 
steeper slope means that the different shapes are given a 
greater range of ratings, which suggests that the subjects are 
able to see greater differences between them. 

6.3 Analysis: regressions 
Although the trends seen in Figure 9 are interesting, before we 

can draw any conclusions, we need to examine the results more 
thoroughly using inferential statistics. The methods that we will 
use are linear regression and analysis of covariance. We will 
examine each of the rendering/view combinations in turn. 

6.3.1 Open GL, left view 
We start with a regression analysis of the data from the OpenGL 

sequences beginning with the left view. Figure 10a shows a 
scatterplot of the ratings given by different subjects for each of the 
shape variations. The first thing to notice is that there is 
substantial variance in the ratings given by the subjects for each 
shape. While studying individual differences in the perception of 
shape is a worthwhile goal, it is beyond the scope of this project. 

Therefore, to allow group analysis of the ratings we normalized 
each subject’s ratings by their overall minimum and maximum 
responses. This effectively compensated for differences in use of 
the slider range without destroying the internal consistency of 
each subject’s ratings. Also, recall that each subject rated each 
shape twice. One option would have been to average these ratings 
before analysis, however given the variance in the data this 
seemed inappropriate, so we included both ratings directly in the 
regressions. If anything, this should make it more difficult to 
achieve significance in the statistical tests. This also explains why 
there are 20 data points for each shape in the scatterplots.    

Figure 10a also shows a regression line fit to the scatterplot data 
for the OpenGL/left view condition and the inset summarizes: 1) 
the equation of this line; 2) R2, the coefficient of determination; 
and 3) the p-value indicating the statistical significance of a test 
for a non-zero slope to the regression line (in the figures that 
follow, blue and red text will be used to indicate significant and 
non-significant results of statistical tests). There are several useful 
pieces of information that can be gleaned from this analysis.  

• First, the small p-value (p<0.001) for the regression indicates 
that there is a statistically significant positive trend in the data. 
This means that under these conditions (OpenGL rendering, 
left view) larger geometric differences are reliably rated as 
being more visibly different from the physical model, and that 
these renderings do in fact convey useful information for 
shape discrimination.  

• Second however, the 0.49 R2 value indicates that only half of 
the variation in ratings can be explained by this model and 
that there is clearly a large amount of variation that is due to 
other factors. Familiarity/learning, and/or inter-subject 
differences might be two possibilities. 

6.3.2 Open GL, right view 
Figure 10b shows a regression analysis of the data from the 

OpenGL, right view condition. As before, the small p-value 
indicates that there is a statistically significant positive trend in 
the overall range of the ratings, but the low R2 and the kinked 
appearance of the mean rating curve (Figure 9a), suggests that a 
simple linear function might not be an appropriate model for this 
data. 

Figure 10c shows regressions on the lower and upper halves of 
the shape variation ranges. Two things can be seen from these 
analyses. 

• First, the slope of the regression line fit to the upper half of 
the range is very steep and statistically significant 
(p<0.001).This means that over this range, subjects are able to 
make clear discriminations among the different shapes. 

• Second and more importantly however, the large p-value 
(p=0.359) for the regression line fit to the lower half of the 
shape range means that the slope of the line over this range is 
not significantly different from zero, which indicates that the 
subjects are not reliably able to see differences between these 
small shape variations under these conditions.  

What we are seeing in this data is a threshold effect. Below a 
certain magnitude of shape variation it is very hard to see 
differences, while above this level the differences are clearly 
visible. 

6.3.3 Open GL, match view 
Finally, Figure 10d shows a regression analysis of the data from 

the OpenGL/match view condition. The overall fit is shown on the 
left. Here both the p-value and the R2 indicate a statistically 
significant positive trend in the ratings, but again the kinked shape 
of the corresponding mean rating curve in Figure 9a suggests the 
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b) open GL, right view
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c) open GL, right view
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d) open GL, match view
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e) open GL, match
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Figure 10: Full and sub-range regressions, OpenGL renderings 



 

need for further investigation. Figure 10e shows a sub-range 
regression on this dataset. Here the non-significant slope of the 
regression line fit to the lower-middle shape variation range 
means that subjects are not able to reliably discriminate these 
shapes under these conditions, and that the significance of the 
regression line fit to the full dataset is only produced by the 
extremes of the range (0 and 4-6). Similar to previous results for 
the right view, the analysis suggests that discrimination is below 
threshold for the lower part of the range, except for shape 7 where 
the shape of the rendered model is most similar to the physical 
model. 

6.3.4 Global illumination, left and right views 
We now turn our attention to analysis of the ratings for the 

global illumination renderings. The results of regression analyses 
for the left and right view conditions are summarized in Figures 
11a,b and 11c,d respectively. The patterns of results here are 
similar to the threshold pattern we already saw in the analyses of 
the OpenGL renderings. For small shape variations (range 0-3) 
the slopes of the regression lines fit to the data (left panels) are not 
significantly different than zero, indicating poor discrimination, 
while for larger variations (range 3-6, right panels) the slopes are 
positive and significant, indicating a reliable ability to accurately 
discriminate shape differences.  

Overall in this experiment, three of the four mismatched view 
conditions have shown this threshold-like pattern, and the fourth 
(OpenGL, left view), while showing a statistically significant 
positive trend, has a relatively shallow slope which indicates 
relatively low sensitivity to shape variation.  

Taken together these results suggest that mismatches 
between the object and image viewpoints may make it difficult 
to judge small to moderate shape differences.  

6.3.5 Global illumination, match view 
To complete our analyses of the data from the rating study we 

now look at the global illumination/match view condition. The 
results of the regression analysis are shown in Figure 11e. There 
are several interesting results of this analysis.  

• First, the small p-value (p<0.001) indicates that the positive 
trend is statistically significant. Of particular importance is the 
fact that unlike the other curves that could be broken down 
into two segments with different slopes, here analyses of 
shape subranges did not yield better fits to the data, 
suggesting that a simple linear model is indeed appropriate.  

• Second, the R2 (0.60) for this fit  is the largest value seen in 
this experiment, suggesting that the unexplained variance in 
ratings is smaller under these conditions possibly because the 
discriminations are easier and therefore subjects’ ratings are 
more orderly. 

• Finally, the slope of the regression line (10.84) is the highest 
seen in the experiment, which means that under these 
conditions subjects are using a greater portion of the response 
range in making their ratings. Again this suggests that these 
conditions make it easier to see the differences in shape, and 
this is reflected by the expansion of the range of ratings. In 
simpler words, under these conditions, the most similar 
rendered shape (0) looks more similar to the physical model, 
and the most different rendered shape (6) looks more 
different.  

A tantalizing hypothesis is that these particular rendering and 
view conditions (global illumination, match view) maximize 
apparent shape contrast making it easier to accurately discriminate 
shape differences. This hypothesis is directly related to the 
original purpose of this project: to evaluate whether advanced 
rendering techniques improve shape discrimination. The analysis 
presented in the following section will examine this hypothesis in 
greater detail. 

6.4 Quantifying the effects of rendering 
The previous analyses have shown that some of the positive 

trends seen in the mean rating data in Figures 9 are statistically 
significant, which indicates that these rendering/view 
combinations are providing reliable visual information for the 
discrimination of shape. But a question more to the point is 
whether these trends are statistically different from each other.  In 
other words, are subjects more sensitive to shape differences 
when some combinations are used than others? To determine this 
we can test to see if the slopes of the regression lines fit to the 
different rendering/view data sets are significantly different from 
one another. The statistical procedure used is called an analysis of 
covariance (ANCOVA). 

In principle, we could do this analysis on any of the 
rendering/view combinations, but we have already seen that there 
is a negative effect of viewpoint differences on sensitivity so we 
decided to eliminate cross-viewpoint comparisons from the 
analysis and focus on the match view conditions. The basic 
question we are trying to answer is whether there is a difference in 
how well the OpenGL and global illumination renderings allow us 
to discriminate shape. If so, this will be reflected by a significant 
difference in the slopes of the regression lines fit to each data set. 

6.4.1 Analysis of covariance 
The results of the analysis of covariance on the OpenGL and 

global illumination match view conditions are shown in Figure 
12. Figures 12a and 12b show the mean rating data for these two 
conditions, and 12c shows confidence interval plots produced by 
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b) glob illum, left view
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c) glob illum, right view

y = 7.11x - 21.90
R2 = 0.31
(p<0.001)
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d) glob illum, right view
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e) glob illum, match view

y = 10.84x - 66.69
R2 = 0.60
(p<0.001)
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Figure 11: Regressions, global illumination renderings 



 

the analysis of covariance, 
that indicate whether the 
slopes of the regression 
lines fit to the underlying 
datasets are significantly 
different from one another. 
The overlapping ranges of 
the confidence intervals 
indicate that the slopes of 
the regressions fit to the 
full range (0-6) of the 
datasets are not 
significantly different, 
(p=0.06) suggesting no 
advantage of one rendering 
method over the other.  

However we already 
know from the analysis 
done in the previous 
Section that a linear model 
is a poor fit to the full 
range of data from the 
OpenGL/match view combination. So to take this into account we 
will redo the analysis, restricting the input to the lower range of 
shape variations (0-4). This makes sense, since our primary 
interest is in determining whether these two rendering methods 
differ in their ability to convey the small differences in shape 
represented by this range.  

Over this range the slope of the regression line on the OpenGL 
dataset (3.74) is itself statistically different than zero (p<0.01). 
Recall however, that the question the analysis of covariance is 
designed to answer is whether this slope is significantly different 
than the slope of the regression line for the global illumination 
dataset (8.46).  

The results of this range-restricted analysis are shown in Figure 
12d-f. The graphs on the left side of the figure show the mean 
rating curves for the OpenGL and global illumination renderings. 
The confidence interval plots for the slopes of the regression lines 
are shown on the right. Now the non-overlap in the confidence 
intervals show that the slopes of the regression lines are 
significantly different from one another (p=0.01).  

The conclusion that can be drawn from this analysis is that 
under the conditions tested, for small variations in shape, 
global illumination renderings provide better visual 
information for shape differences, and allow better 
discrimination of shape. This is reflected in the steeper slope 
of the regression line fit to the data and the greater range of 
ratings given to the different shapes. 

7 Discussion/Conclusions 
The original question we sought to answer through this project 

is whether advanced rendering techniques such as global 
illumination allow more accurate discrimination of shape 
differences than standard rendering methods such as OpenGL. 
Further we were interested in how an additional factor -- 
viewpoint -- affects our ability to discriminate shape differences. 
Following the experiments and analyses described in the previous 
section we can reach the following conclusions. Under the 
conditions studied: 

• Viewpoint appears to have an effect on our ability to 
discriminate shape. Under most of the conditions tested, 
discrimination, especially for the smallest variations, was 
worse when the viewpoints of the physical and rendered 
models were different. Performance was generally better 

under matched view conditions, and this is reflected in the 
increased dynamic range of ratings given to the different 
shape variations.  

• Finally, to address the main question of this project, rendering 
method does have an effect on the ability to discriminate 
shape differences. Even under the best case match view 
conditions, there was still a significant improvement in 
subjects’ ability to discriminate shape differences when global 
illumination rendering methods were used. If we take ratio of 
the slopes of the regression lines as a measure of the 
magnitude of the effect, then using global illumination 
methods more than doubled sensitivity (x2.26). 

8 Future Work 
There is still much more work to be done. First, it is clear that 

surface reflections are an important source of information for 
shape and that these reflections are affected by material properties 
so exploring the relations between surface finish and shape seems 
like an important next step.  Testing different kinds of shape 
variation would also be worthwhile, and in fact we already have a 
second set of variations on the frog model that we were unable to 
test due to time limitations. Finally, one of the major differences 
between looking at the physical and rendered models is that we 
view the physical model with true binocular vision while when we 
look at the renderings we have a binocular view on a single point 
perspective image. In these studies we did not regard this as a 
drawback since our premise was that we wanted the subjects to 
have the best possible understanding of the shape of the physical 
model when judging differences with respect to the rendered 
models. However this does leave open the question of whether 
shape discrimination performance would be even better if we used 
stereoscopic renderings. This also opens the question of the 
relative magnitudes of the rendering and stereo factors in shape 
discrimination. Any or all of these topics would be worthwhile 
subjects for future study. 

9 Acknowledgments 
Thanks to the students and staff of the Cornell Program of 

Computer Graphics for participating in the experiments described 
in this document. Thanks also to GM Design staff who provided 
and painted the frog models and paint samples, and contributed to 
formative discussions of this project. This work was supported by 

a) open GL, match view 

y = 8.68x - 49.37

0
10
20
30
40
50
60
70
80
90

100

0 1 2 3 4 5 6
shape

di
ffe

re
nc

e 
ra

tin
g

 

b) glob illum, match view 
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Figure 12: Analysis of covariance. Full (top) and sub-range (bottom) regressions. 
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